MA 665 EXERCISES 1

- (1) Show that the ring homomorphism $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is both a monomorphism and an epimorphism in the category of commutative rings with unit, though it is not an isomorphism.
- (2) Show that if $g \circ f$ is a monomorphism, then so is f. Similarly, show that if $g \circ f$ is an epimorphism, then so is g. Conclude that any isomorphism is both a monomorphism and an epimorphism. (Note that this question is asking about the categorical definition of monomorphisms and epimorphisms, so in particular you cannot prove it by plugging in elements.)
- (3) If \mathcal{G} and \mathcal{H} are groups regarded as categories with one object, characterize functors from \mathcal{G} to \mathcal{H} .