MA 665 EXERCISES 2

(1) In a category with a zero object, show that the zero morphism from an object A to an object B is unique. In other words, if the category has two zero objects Z and Z^{\prime}, then the composites $A \rightarrow Z \rightarrow B$ and $A \rightarrow Z^{\prime} \rightarrow B$ are the same.
(2) Show that the product of two objects A and B in a category \mathcal{C} is unique up to unique isomorphism. In other words, if $\left(C, p_{1}, p_{2}\right)$ and $\left(D, q_{1}, q_{2}\right)$ are both products of A and B, then there is a unique isomorphism $g: C \rightarrow D$ such that $p_{1}=q_{1} \circ g$ and $p_{2}=q_{2} \circ g$.
(3) Formulate and prove the statement that the kernel of a morphism is unique up to unique isomorphism.

