MA 665 EXERCISES 4

- (1) Prove that an $n \times n$ matrix A with entries in \mathbb{C} satisfying $A^3 = A$ can be diagonalized. Is the same statement true over any field K?
- (2) Let R be a commutative ring with unit and let I, J be ideals of R.
 - (a) Prove that every element of $R/I \otimes_R R/J$ can be written as a simple tensor of the form $(1+I) \otimes (r+J)$.
 - (b) Prove that there is an *R*-module isomorphism from $R/I \otimes_R R/J$ to R/(I+J) mapping $(r+I) \otimes (r'+J)$ to rr' + (I+J).
- (3) Prove that extension of scalars from \mathbb{Z} to the Gaussian integers $\mathbb{Z}[i]$ of the ring \mathbb{R} is isomorphic to \mathbb{C} as a ring. In other words, $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}$ is isomorphic to \mathbb{C} as a ring.