MA 665 EXERCISES 4

(1) Prove that an $n \times n$ matrix A with entries in \mathbb{C} satisfying $A^{3}=A$ can be diagonalized. Is the same statement true over any field K ?
(2) Let R be a commutative ring with unit and let I, J be ideals of R.
(a) Prove that every element of $R / I \otimes_{R} R / J$ can be written as a simple tensor of the form $(1+I) \otimes(r+J)$.
(b) Prove that there is an R-module isomorphism from $R / I \otimes_{R} R / J$ to $R /(I+J)$ mapping $(r+I) \otimes\left(r^{\prime}+J\right)$ to $r r^{\prime}+(I+J)$.
(3) Prove that extension of scalars from \mathbb{Z} to the Gaussian integers $\mathbb{Z}[i]$ of the $\operatorname{ring} \mathbb{R}$ is isomorphic to \mathbb{C} as a ring. In other words, $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}$ is isomorphic to \mathbb{C} as a ring.

