MA 665 EXERCISES 5

- (1) Let R be a ring. Prove that every R-module is projective if and only if every R-module is injective.
- (2) Let R be a commutative ring. Prove that R[x] is a flat R-module.
- (3) Let M_1 and M_2 be *R*-modules. Show that $M_1 \oplus M_2$ is an injective *R*-module if and only if both M_1 and M_2 are injective *R*-modules. Conclude that, if *R* is a PID that is not a field, then no nonzero finitely generated *R*-module is injective.