MA 665 EXERCISES 6

(1) Show that the following are equivalent.
(a) B is an injective R-module.
(b) $\operatorname{Ext}_{R}^{i}(A, B)=0$ for all $i \neq 0$ and all A.
(c) $\operatorname{Ext}_{R}^{1}(A, B)=0$ for all A.
(2) Let R be an integral domain with field of fractions K. Show that $\operatorname{Tor}_{1}^{R}(K / R, B)$ is the torsion submodule of B for every R-module B.
(3) Let p be a prime, suppose p^{2} divides m, let $R=\mathbb{Z} / m \mathbb{Z}$ and $B=\mathbb{Z} / p \mathbb{Z}$. Show that

$$
0 \rightarrow \mathbb{Z} / p \mathbb{Z} \hookrightarrow \mathbb{Z} / m \mathbb{Z} \xrightarrow{p} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / p} \mathbb{Z} / m \mathbb{Z} \xrightarrow{p} \mathbb{Z} / m \mathbb{Z} \xrightarrow{m / p} \cdots
$$ is an infinite periodic injective resolution of B. Prove that

$$
\operatorname{Ext}_{\mathbb{Z} / m \mathbb{Z}}^{n}(\mathbb{Z} / p \mathbb{Z}, \mathbb{Z} / p \mathbb{Z}) \cong \mathbb{Z} / p \mathbb{Z}
$$

for all n.

