MA 665 EXERCISES 7

(1) Let $\beta_{i, j}$ be the graded Betti numbers of a finitely generated S-module. If, for a given i there is a d such that $\beta_{i, j}=0$ for all $j<d$, show that then $\beta_{i+1, j+1}=0$ for all $j<d$.
(2) Let $\beta_{i, j}$ be the graded Betti numbers of a finitely generated S-module, and let $B_{j}=\sum_{i \geq 0}(-1)^{i} \beta_{i, j}$. Show that

$$
H_{M}(d)=\sum_{j} B_{j}\binom{r+d-j}{r}
$$

Moreover, the values B_{j} can be determined inductively from the Hilbert function by the formula

$$
B_{j}=H_{M}(j)-\sum_{k<j} B_{k}\binom{r+j-k}{r}
$$

(3) Consider the map from $S=k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ to $k[y, z]$ given by sending x_{i} to $y^{i} z^{3-i}$ for all i, and let T denote the image. The following series of exercises shows that a resolution of T is given by

$$
0 \rightarrow S(-3)^{2} \rightarrow S(-2)^{3} \rightarrow S \rightarrow T \rightarrow 0
$$

(a) Show that $H_{T}(d)=3 d+1$ for $d \geq 0$.
(b) Compute the Hilbert functions of the terms $S, S(-2)^{3}$, and $S(-3)^{2}$. Show that their alternating sum is equal to the Hilbert function H_{T}.
(c) Show that the map from $S(-3)^{2}$ to $S(-2)^{3}$ given by the matrix

$$
\left(\begin{array}{ll}
x_{0} & x_{1} \\
x_{1} & x_{2} \\
x_{2} & x_{3}
\end{array}\right)
$$

is injective.
(d) Show that the results in parts (b) and (c) together imply that the complex above is a free resolution of T.

