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Abstract. We briefly survey recent results related to linear series on curves that are general in
various moduli spaces, highlighting the interplay between algebraic geometry on a general curve

and the combinatorics of its degenerations. Breakthroughs include the proof of the Maximal Rank

Theorem, which determines the Hilbert function of the general linear series of given degree and
rank on the general curve in Mg , and complete analogs of the standard Brill-Noether theorems

for curves that are general in Hurwitz spaces. Other advances include partial results in a similar
direction for linear series in the Prym locus of a general unramified double cover of a general

k-gonal curve and instances of the Strong Maximal Rank Conjecture.

1. Linear Series on a Curve General in Mg

In the early days of algebraic geometry, an algebraic curve was understood as coming equipped
with an embedding in projective space. In the late 19th and early 20th century, however, mathe-
maticians began to consider abstract curves and Riemann surfaces, without reference to an ambient
space. Since that time, a central problem in algebraic geometry has been the following:

Problem 1.1. Given a curve C, describe all maps from C to projective space.

When approaching this problem, it is natural to fix discrete invariants, such as the dimension of
the projective space Pr and the degree d of the maps. Passing to the language of line bundles and
Picard varieties, we are then interested in the geometry of the Brill-Noether variety

W r
d (C) : =

{
L ∈ Picd(C) | h0(C,L) ≥ r + 1

}
.

A series of results in the 1980s describe these varieties when C is general in the moduli space Mg.
Throughout this survey, we assume that the ground field is algebraically closed field of characteristic
zero. For extensions to positive characteristic, see Remark 1.3.

Theorem 1.2. Let C be a curve that is general in Mg. Let ρ(g, r, d) := g − (r + 1)(g − d+ r).

(1) The variety W r
d (C) is of pure dimension min{ρ(g, r, d), g} when this is non-negative, and

empty otherwise [GH80];
(2) The locally closed variety W r

d (C) rW r+1
d (C) is smooth [Gie82];

(3) If ρ(g, r, d) ≥ 1 then W r
d (C) is irreducible [FL81, Gie82];

(4) If ρ(g, r, d) = 0 then |W r
d (C)| = g! ·

∏r
j=0

j!
(g−d+r+j)! [Kem71, KL72, GH80];

(5) If ρ(g, r, d) = 0 then the universal W r
d over the locus of curves in Mg with finitely many

linear series of rank r and degree d is irreducible [EH87a];

This series of results about linear series on the generic curve inMg, and more recent generaliza-
tions and extensions to general curves in other moduli spaces, are broadly known as Brill-Noether
Theory, in honor of the celebrated work [BN74]. We will highlight the interplay between algebraic
geometry and the combinatorics of degenerations in this subject. Note that the generic curve itself
is a single object with no combinatorial structure, and it is possible to prove much of Theorem 1.2
without degenerations, e.g., using vector bundle methods [Laz86]. Such an approach is used in
[ABFS16] to construct smooth Brill-Noether-Petri-general curves of every genus defined over Q.
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In this brief survey, we emphasize the role of degenerations and their associated combinatorics in
Brill-Noether theory. The numerical invariants appearing in Theorem 1.2 have rich combinatorial
significance and intricate combinatorial structures come to the surface in various proofs by degen-
eration methods. For instance, when ρ(g, r, d) = 0, the number of points in W r

d (C) is equal to the
number of standard tableaux on the rectangular Young diagram λ(g, r, d) with r + 1 columns and
g − d+ r rows. A beautiful recent generalization says that the holomorphic Euler characteristic of
W r
d (C) is equal to the number of set-valued tableaux on λ(g, r, d) [ACT21, CP21].

In general, the codimension of W r
d (C) in Picd(C) is the number of boxes in λ(g, r, d). In some

degeneration arguments, the limit of W r
d (C) breaks into pieces that are naturally in bijection with

the standard fillings of λ(g, r, d) with entries from {1, . . . , g}. In others, the limiting pieces are
related to solutions of an intersection problem on a Grassmannian, which is in turn related to
the combinatorics of Young tableaux via Schubert calculus. The degeneration methods that have
appeared in the Brill-Noether literature are themselves rich and varied. The limits of C that have
been fruitfully considered include g-nodal [GH80, Gie82] and g-cuspidal rational curves [EH83a], flag
curves with g elliptic tails [EH83b, EH87a], chains of elliptic curves [Oss14], and tropical curves,
most often chains of g loops [CDPR12, JP14].

Non-degenerative methods from algebraic geometry and the combinatorics of various degenera-
tions all continue to play key roles in current developments in Brill-Noether theory. In some cases,
similarities in the combinatorial structures that appear through otherwise disjoint approaches are
enough to yield new insights and breakthroughs. We hope readers will be enticed to dive more deeply
into the details of this subject, to enjoy and appreciate the interplay between algebraic geometry
and combinatorics in the study of special linear series on general curves.

Remark 1.3. Here, we mention extensions of the surveyed results to positive characteristic. The-
orems 1.2 and 4.3 hold in arbitrary characteristic. Theorem 3.1 holds in characteristic not 2.
Theorem 2.7 pre-supposes irreducibility of the Hurwitz space Hk,g, which is known in characteris-
tic greater than k [Ful69]. Nevertheless, the analog of parts (1)-(4) holds for some component of
Hk,g in arbitrary characteristic, as does the analog of part (5) in any characteristic not dividing
k. Theorem 3.3 pre-supposes irreducibility of the moduli of chains of covers; we are unaware of
any extensions to positive characteristic. Nevertheless, the analog of Theorem 3.3 holds for some
component of this moduli space in all characteristics not equal to 2, 3, or 5 and not dividing k.

Acknowledgments. We are grateful to Gavril Farkas, Eric Larson, Hannah Larson, Yoav Len and
Nathan Pflueger for helpful comments on an earlier draft of this survey.

The first author was supported by NSF DMS–2054135. The second author was supported by
NSF DMS–2001502 and DMS–2053261.

2. Hurwitz-Brill-Noether Theory

Theorem 1.2 answers many natural questions about the geometry of W r
d (C) when C is general

in Mg. But what about curves that are not general? If a curve C admits an atypical linear series,
what does that imply about the existence and behavior of other linear series on C? One compelling
special case is the following analog of Problem 1.1 for curves with a special pencil.

Problem 2.1. If π : C → P1 is a general cover of genus g and degree k, describe W r
d (C).

Here, a general cover means that C → P1 is general in an appropriate Hurwitz space. At first
glance, all of the beautiful structures from classical Brill-Noether theory for curves general in Mg

seem to break down. One can, without much difficulty, construct examples where W r
d (C) is not

equidimensional, and W r
d (C) rW r+1

d (C) is singular.

Example 2.2. Let π : C → P1 be a general cover of genus 6 and degree 3. Then W 1
4 (C) is the

disjoint union of a 1-dimensional component consisting of line bundles of the form π∗O(1)⊗OC(p)
for p ∈ C and an isolated point KC ⊗ π∗O(−2).
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Nevertheless, special cases have been fully understood for many years, including all cases where
C → P1 has degree 2 or 3 [Cli78, Mar46]. In the 1990s, researchers considered higher degree covers,
found upper bounds for dimW r

d (C), and proved the existence of components of certain specified
dimensions [Mar96, BK96, CM99]. More recently, Pflueger used tropical methods on a chain of
loops to produce an improved upper bound for dimW r

d (C), which he conjectured to be sharp [Pfl17].
Pflueger also remarked that his results could be proved by similar combinatorial arguments using
degeneration to a chain of elliptic curves instead of tropical degenerations, and both perspectives
have been useful in subsequent work.

Pflueger’s work inspired a new wave of interest in this area. His conjecture was proved by Ran-
ganathan and the first author, using the algebraic geometry of curves in toric varieties in combination
with tropical geometry and log deformation theory.

Theorem 2.3 ([JR21]). Let C → P1 be a general cover of genus g and degree k. Then

dimW r
d (C) = max

`∈{0,...,r′}
ρ(g, r − `, d)− `k,

where r′ = min{r, g − d+ r − 1}.

Here, W r
d (C) may not have pure dimension, and dimW r

d (C) means the maximum of the dimensions
of its components. This analog of Theorem 1.2(1) has been followed by more comprehensive results,
giving a description of all components of W r

d (C), along with their dimensions and basic properties.
The starting point for this subsequent work is a stratification of W r

d (C), using the following discrete
invariants that generalize the Maroni invariants of trigonal curves, introduced independently by
H. Larson [Lar21] and by Cook-Powell and the first author [CJ19].

We say that a line bundle has splitting type µ = (µ1, . . . , µk) if π∗L ∼= ⊕ki=1O(µi). The splitting
type of a line bundle L is a more refined invariant than its rank and degree; it encodes the rank of
L⊗ π∗O(m) for all integers m.

Definition 2.4. The splitting type locus is

Wµ(C, π) : =
{
L ∈ Pic(C) | π∗L ∼=

k⊕
i=1

O(µi)
}
.

Remark 2.5. Note that Wµ(C, π) ⊂ Pic(C) is locally closed; it is the analog of W r
d (C)rW r+1

d (C)
in the setup for Theorem 1.2.

The analog of Theorem 1.2 for splitting type loci involves numerical invariants that again have
subtle and rich combinatorial significance, with k-core partitions playing the role of arbitrary par-
titions in standard Brill-Noether theory. While new in this context, k-core partitions have been
studied extensively in number theory, representation theory, and combinatorics. We recall the defi-
nition and a few basic properties; see [LLM+14] for a fuller treatment and further references.

We identify partitions with upper-left justified Young diagrams, so the partition 4 = 3 + 1 is
depicted by the Young diagram in Figure 1. The Young lattice Y is the set of partitions, partially

Figure 1. The Young diagram corresponding to the parition 4 = 3 + 1.

ordered by inclusion of Young diagrams.
Each box in a partition determines a hook, consisting of that box, together with the boxes below

it in the same column, and the boxes to the right of it in the same row. The hook length of a box
is the number of boxes in the associated hook.
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Definition 2.6. A k-core partition is a partition in which no box has hook length equal to k.

For instance, the partition 4 = 3 + 1 is 3-core, but not 2-core or 4-core.
The k-core partitions Yk ⊂ Y form a sublattice with respect to the induced partial order. For a

k-core partition λ, we write rk(λ) for the poset rank of [0̂, λ] ⊂ Yk, i.e., the length of maximal chains

in the interval between the empty partition 0̂ and λ. Note that rk(λ) is typically strictly smaller
than the number of boxes in λ, because deleting a corner box from a k-core partition typically does
not yield another k-core partition.

To each splitting type µ = (µ1, . . . , µk), we associate a k-core partition λ(µ) as follows:

λ(µ) : =
{

(x, y) ∈ N2 | ∃m ∈ Z s.t. x ≤
k∑
i=1

max{0, µi +m+ 1}, y ≤
k∑
i=1

max{0,−µi −m− 1}
}
.

For example, Figure 2 depicts two 3-core partitions of the form λ(µ).

λ(µ0) λ(µ1)

Figure 2. The 3-core partitions associated to the splitting types µ0 = (−4, 0, 0)
and µ1 = (−3,−2, 1).

We can now state the main results on splitting type loci.

Theorem 2.7. Let π : C → P1 be a general cover of genus g and degree k. Then

(1) The locally closed subvariety Wµ(C, π) ⊂ Picd(C) has pure dimension g − rk(λ(µ)) when
this is nonnegative, and is empty otherwise [Lar21, CJ19];

(2) If g − rk(λ(µ)) ≥ 0 then Wµ(C, π) is smooth [Lar21];
(3) If g − rk(λ(µ)) ≥ 1 then Wµ(C, π) is irreducible [LLV20];
(4) If g − rk(λ(µ)) = 0 then |Wµ(C, π)| is the number of maximal chains in the interval

[0̂, λ(µ)] ⊂ Yk [LLV20];
(5) If g−rk(λ(µ)) = 0 then the universal Wµ over the locus of covers in the Hurwitz space with

finitely many line bundles of splitting type µ is irreducible [LLV20].

Theorem 2.7 is precisely analogous to Theorem 1.2, with the lattice of k-core partitions Yk playing
the role of the full lattice of partitions Y. Indeed, Theorem 1.2 says that if C is general in Mg,

then the codimension of W r
d (C) in Picd(C) is the rank of the interval [0̂, λ(g, r, d)] ⊂ Y and if

dimW r
d (C) = 0 then |W r

d (C)| is equal to the number of maximal chains in this interval. When k is
sufficiently large, Theorem 2.7 specializes to Theorem 1.2.

Example 2.8. Returning to Example 2.2, let π : C → P1 be a general cover of genus 6 and degree
3. If L ∈W 1

4 (C) has splitting type µ = (µ1, µ2, µ3), then

3∑
i=1

max{0, µi + 1} = h0(π∗L) = h0(L) = 2 and

3∑
i=1

µi = deg(π∗L) = χ(L)− 3 = −4.
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The two splitting types that satisfy both these conditions and the condition that 6− r3(λ(µ)) ≥ 0

are µ0 = (−4, 0, 0) and µ1 = (−3,−2, 1). Each interval [0̂, λ(µi)] ⊂ Y3 has a unique maximal chain,
as shown in Figure 3. The lengths of these chains show that r3(λ(µ0)) = 6 and r3(λ(µ1)) = 5.
By Theorem 2.7, this implies that dimWµi(C, π) = i and moreover, since the maximal chain in

[0̂, λ(µ0)] ⊂ Y3 is unique, Wµ0(C, π) is a single point. A general trigonal curve is not hyperelliptic,
so W 2

4 (C) is empty and thus, as discussed in Example 2.2, W 1
4 (C) has two irreducible components,

one of dimension one and the other an isolated point of dimension 0.

1 2 3 4 5 6

3 4 5 6

5 6

1 3 5

2 4

3 5

4

5

Figure 3. Maximal chains of 3-core partitions in the intervals [0̂, λ(µ0)] and [0̂, λ(µ1)].

These results are proven by degeneration to a chain of elliptic curves in [Lar21, LLV20]. To
ensure that this degenerate curve admits a map of degree k to a rational curve, one specifies that
the difference between the two attaching points on each component has torsion order k in the group
law on the elliptic curve. Building on Pflueger’s earlier work, one can then classify the limit linear
series on this degenerate curve that are limits of line bundles of a given splitting type. The tableaux
that arise from this construction are precisely those that come from maximal chains in the lattice
of k-cores. The same combinatorial structures arise when approaching these problems via tropical
degenerations, as in [CJ19, CJ20].

Remark 2.9. Another interesting result in late 20th century Brill-Noether Theory says that, if
ρ(g, r, d) < 0 then every component of the locus in Mg of curves C satisfying W r

d (C) 6= ∅ has
codimension at most −ρ(g, r, d) [Ste98]. To the best of our understanding, the analogs of this
statement in Hurwitz-Brill-Noether Theory, and in the Prym-Brill-Noether theory discussed below,
are open problems.

3. Prym-Brill-Noether Theory

Let C be a smooth curve of genus g, and let π : C̃ → C be an unramified double cover. In [Wel85],
Welters defines the Prym-Brill-Noether locus to be

V r(C, π) : =
{
L ∈ Pic2g−2(C) | Nmπ(L) = ωC , h

0(C,L) ≥ r+ 1, and h0(C,L) ≡ r+ 1 (mod 2)
}
.

The following is an analog of parts (1)-(4) of Theorem 1.2 in this setting.

Theorem 3.1. Let π : C̃ → C be a general unramified double cover, where the base has genus g.

(1) The variety V r(C, π) is of pure dimension g − 1 −
(
r+1
2

)
when this is non-negative, and

empty otherwise [Wel85, Ber87];
(2) The singular locus of V r(C, π) is V r+2(C, π) [Wel85] ;
(3) If g − 1−

(
r+1
2

)
≥ 1 then V r(C, π) is irreducible [Deb00] ;

(4) If g − 1−
(
r+1
2

)
= 0, then |V r(C, π)| = 2(r

2) · (g − 1)! ·
∏r
i=1

(i−1)!
(2i−1)! [DCP95].

It is possible to prove (3) and (4) using vector bundle techniques rather than degenerations [DCP95].
As in Theorem 1.2, the numerical invariants that appear have rich combinatorial significance, and
intricate structures involving partitions and tableaux emerge in proofs via degeneration.

Remark 3.2. The Prym-Brill-Noether analog of Theorem 1.2 (5) is an open problem.
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Figure 4. The partition ∆3.

Let ∆r = r + (r − 1) + · · ·+ 1 denote the isosceles triangular partition with side length r. This
partition plays a role in Prym-Brill-Noether theory analogous to that of the rectangular partition
λ(g, r, d) in the Brill-Noether theory of a general curve in Mg. Indeed, Theorem 3.1 says that, if

π : C̃ → C is a general unramified double cover, then the codimension of V r(C, π) in the Prym

variety is the rank of the interval [0̂,∆r] ⊂ Y, and if dimV r(C, π) = 0, then |V r(C, π)| is equal to
the number of maximal chains in this interval.

Given Theorem 3.1 for unramified double covers of a general curve, it is natural to ask next
about the Prym-Brill-Noether theory of double covers of a curve C that is not necessarily general
in Mg. As in Section 2, a compelling special case is when C is general in the k-gonal locus, i.e.,
the irreducible locus of curves in Mg on which the minimal degree of a pencil is k, for k ≥ 3.

When k ≥ 3, there is an irreducible moduli space of chains of covers C̃ → C → P1, where the first
map is an unramified double cover and the second has degree k [BF86], so the generic such cover
is well-defined. In this setting, recent work provides new bounds on the dimension of V r(C, π),
obtained for even k in [LU20] and for all k in [CLRW20].

Theorem 3.3. [LU20, CLRW20] Let π : C̃ → C be an unramified double cover of a general k-gonal
curve of genus g, with k ≥ 3. Let ` =

⌈
k
2

⌉
, and let

n(r, k) : =

{ (
`+1
2

)
+ `(r − `) if ` ≤ r − 1(

r+1
2

)
if ` ≥ r.

Then
dimV r(C, π) ≤ g − 1− n(r, k).

This upper bound is not sharp in general. For example, consider the case where g = 6 and k = 4.
A general curve of genus 6 is tetragonal, so by Theorem 3.1 we see that V 3(C, π) is empty. Since
` = 2 = r − 1, however, Theorem 3.3 yields only

dimV 3(C, π) ≤ 6− 1−
(

3

2

)
− 2 = 0.

However, the bound is conjectured to be sharp when g is sufficiently large.

Conjecture 3.4. [CLRW20] Let π : C̃ → C be an unramified double cover of a general k-gonal
curve, with k ≥ 3. If g � n(r, k), then

dimV r(C, π) = g − 1− n(r, k).

From a combinatorial perspective, Theorem 3.3 arises from studying the partition ∆r in the
lattice of k-core partitions Yk. Note that every box in ∆r has odd hook length, so if k is even, then
∆r is a k-core partition. When k is even, n(r, k) is the rank of ∆r in Yk. For example, Figure 5

depicts a maximal chain in the interval [0̂,∆3] ⊂ Y4. This chain has length 5, corresponding to the
fact that n(3, 4) = r4(∆3) = 5.

1 3 4

2 5

4

Figure 5. A maximal chain in Y4.
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A similar result holds when k is odd, but because ∆r is not a k-core in this case, it requires the
language of displacement tableaux from [Pfl17]. A tableau t is said to be a k-uniform displacement
tableau if, whenever t(x, y) = t(x′, y′), we have x− y ≡ x′ − y′ (mod k). The value n(r, k) is equal
to the minimum number of symbols in a k-uniform displacement tableau on ∆r.

Theorem 3.3 is proven via tropical methods. In [LU20], Len and Ulirsch show that the skeleton
of a Prym variety is the Prym variety of the skeleton. They then construct an explicit double cover

ϕ : Γ̃ → Γ of tropical curves, which they call the k-gonal uniform folded chain of loops, and study
the tropical Prym-Brill-Noether variety V r(Γ, ϕ). These ideas are developed further in [CLRW20],
which establishes not only the dimension bound above, but also various topological properties.

Theorem 3.5. [CLRW20] Let ϕ : Γ̃ → Γ be a k-gonal uniform folded chain of loops. Then the
tropical Prym-Brill-Noether variety V r(Γ, ϕ) has pure dimension g − 1 − n(r, k) and, when this
dimension is positive, it is connected in codimension one.

Tropicalizations of irreducible varieties are of pure dimension and connected through codimension
1 [CP12], so Theorem 3.5 points suggestively toward analogs of parts (1) and (3) of Theorem 1.2.

Many open questions remain about the Prym-Brill-Noether variety V r(C, π), where π : C̃ → C
is an unramified double cover of a general k-gonal curve.

Problem 3.6. Let π : C̃ → C be an unramified double cover of a general k-gonal curve, with k ≥ 3.

(1) What is dimV r(C, π)?
(2) Is the locally closed variety V r(C, π) r V r+2(C, π) smooth?
(3) If dimV r(C, π) ≥ 1, is V r(C, π) irreducible?
(4) When dimV r(C, π) = 0, what is |V r(C, π)|?
(5) When dimV r(C, π) = 0, what is the action of monodromy?

One might reasonably approach such problems starting from [CLRW20] via tropical lifting, as in
[CJP15], or via log deformation theory, as in [JR21]. Alternatively, one could look for analogous
statements about limit linear series on a double cover of a k-gonal chain of elliptic curves by a
folded chain of elliptic curves, and identify which of these are limits of line bundles in the Prym-
Brill-Noether locus of a degenerating family of covers, as was done in [LLV20] for the Hurwitz-Brill-
Noether theory.

4. Multiplication Maps and Maximal Rank Results

A linear series of rank r on a curve C is a pair (L, V ), where L is a line bundle on C and
V ⊆ H0(C,L) is a vector subspace of dimension r + 1. By Theorem 1.2, when ρ(g, r, d) ≥ 0, the
universal space Grd of linear series of degree d and rank r has a unique irreducible component that
dominates Mg. In other words, there is a well-defined generic linear series on the generic curve of
genus g. Natural directions for further study therefore include the syzygies of this generic linear
series, and the geometry of the locus of linear series with special syzygies.

The most basic syzygies to consider in this context are the kernels of the multiplication maps
from symmetric powers of a linear series to global sections of tensor powers of the underlying line
bundle. Recall that a map between finite dimensional vector spaces has maximal rank if it is either
injective or surjective. Harris popularized the Maximal Rank Conjecture, i.e., the prediction that
the multiplication maps for the general linear series on the generic curve should have maximal rank
[Har82]. This is now a theorem of E. Larson.

Theorem 4.1 ([Lar17]). Suppose C is general and V ⊂ H0(C,L) is a general linear series of given
degree and rank. Then the multiplication maps

µm : Symm V → H0(C,L⊗m)

have maximal rank for all m.
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The proof of this theorem relies on an elaborate induction involving interpolation for vector
bundles [ALY19] and an analogous statement for hyperplane sections of the general curve of genus
g and degree d in Pr [Lar20]. It also uses novel degeneration techniques that surpass what was
previously achieved using embedded methods à la Hirschowitz-Horace [Hir85], in part by exploiting
properties of the Kontsevich moduli space of stable maps. The essential ingredients span more than
a half-dozen articles, some of which remain unpublished, as does the final paper completing the
proof. For a short and helpful overview of this work, see [Lar18].

When ρ(g, r, d) = 0, Theorems 1.2 and 4.1 together imply that every linear series of degree d
and rank r on a general curve has multiplication maps of maximal rank for all m. When ρ(g, r, d)
is positive, other natural questions arise about the geometry of the locus in Grd(C), for a general
curve C, where a given multiplication map fails to have maximal rank. In this direction, Aprodu
and Farkas proposed a Strong Maximal Rank Conjecture that predicts the codimension of the locus
in Grd(C) where µm fails to have maximal rank, when C is general, for suitable parameters g, r, d,m.

Conjecture 4.2 ([AF11]). Fix integers g, r, d ≥ 1 such that 0 ≤ ρ(g, r, d) < r − 2, and fix m ≥ 2.
Let C be a general curve in Mg. Then the determinantal variety

{(L, V ) ∈ Grd(C) | µm : Symm V → H0(C,L⊗m) fails to have maximal rank }
is of the expected dimension

ρ(g, r, d)− 1−
∣∣∣∣(r +m

m

)
− (2d+ 1− g)

∣∣∣∣ ,
where, by convention, the locus is empty when the expected dimension is negative.

One motivation for pursuing this conjecture is that the images of the loci of pairs (C,L) for
which µm fails to have maximal rank are candidates for interesting effective cycles in the coarse
moduli space Mg. When these syzygytic loci are of the expected dimension, their classes can
sometimes be computed via intersection theory and computations with test curves. For instance,
the counterexamples to the Slope Conjecture in [FP05, Far09] are instances of such syzygytic loci
that happen to be effective divisors outside the cone spanned by previously known effective divisors.

The cases of the Strong Maximal Rank Conjecture where ρ(g, r, d) = 0 follow from Theorem 4.1.
Only a small selection of other cases are known; these include the non-special cases where r = d−g,
[AF11, Proposition 5.7], and the cases where m = 2 and d ≤ g + 1 [TiB03]. Note that, for m = 2,
and for each fixed r, there are only finitely many other cases to consider. The cases where m = 2
and r = 4 are discussed in [AF11, Remark 5.6].

Farkas and the authors recently proved a few new cases of the Strong Maximal Rank Conjecture
for m = 2, starting with (g, r, d) = (22, 6, 25) and (23, 6, 26). In these cases, every linear series of the
given parameters on a general curve C of genus g is complete, so W r

d (C) = Grd(C), and the expected
dimension of the locus where the multiplication map fails to have maximal rank is negative.

Theorem 4.3 ([FJP20]). Let g = 22 or 23. For a general curve C in Mg, the multiplication map

µ2 : Sym2H0(C,L)→ H0(C,L⊗2)

is injective for all line bundles L ∈W 6
g+3(C).

Once again, the syzygytic loci obtained as images of pairs (C,L) where the multiplication map
fails to be injective turn out to be effective divisors of smaller slope than any previously known
effective divisors on M22 and M23, respectively. Moreover, the slopes are small enough to conclude
that these moduli spaces are of general type.

Theorem 4.4 ([FJP20]). The moduli space of curves Mg is of general type for g ≥ 22.

This improves the bound of g ≥ 24 proved decades ago by Harris, Mumford, and Eisenbud [HM82,
Har84, EH87b]; they used Theorem 1.2 to construct the requisite divisors of small slope in those
cases. The case g = 22 also disproves the conjecture of Eisenbud and Harris that Mg should be
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uniruled for g < 23 [EH89]. The Kodaira dimensions and uniruledness of Mg for 17 ≤ g ≤ 21
remain open problems.

Farkas and the authors also applied the techniques from [FJP20], with some small but important
improvements, to prove the Strong Maximal Rank Conjecture for m = 2 and (g, r, d) = (13, 5, 16),
and thereby construct divisors of small slope on M13.

Theorem 4.5 ([FJP21]). For a general curve C in M13, the multiplication map

µ2 : Sym2H0(C,L)→ H0(C,L⊗2)

is surjective for all line bundles L ∈W 5
16(C).

The closure of the locus of Brill-Noether general curves of genus 13 with at least one L ∈ W 5
16

such that µ2 is not surjective supports an effective divisor in Mg. This is the first known effective

divisor on a moduli space Mg for g ≥ 10 with slope less than 6 + 10/g; it had previously been
believed that such divisors may not exist [CFM13]. The class of this divisor is used to compute
the class of yet another divisor of even smaller slope, the non-abelian Brill-Noether divisor, which is
used to show that the Prym moduli space R13 is of general type; 13 is now the smallest g for which
Rg is known to be of general type.

This survey is far from exhaustive, and highlights only a portion of the recent results in this
active area. It inevitably reflects the biases and limitations of the authors. We hope the references
provided will be a useful starting point for those who wish to learn more.
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