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Abstract. We discuss linear series on tropical curves and their relation to

classical algebraic geometry, describe the main techniques of the subject, and
survey some of the recent major developments in the field, with an emphasis

on applications to problems in Brill-Noether theory and arithmetic geometry.
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1. Introduction

Algebraic curves play a central role in the field of algebraic geometry. Over
the past century, curves have been the focus of a significant amount of research,
and despite being some of the most well-understood algebraic varieties, there are
still many important open questions. The goal of classical Brill-Noether theory
is to study the geometry of a curve C by examining all of its maps to projective
space, or equivalently the existence and behavior of all line bundles on C. Thus,
we have classical results such as Max Noether’s Theorem [ACGH85, p 117] and the
Enriques-Babbage Theorem [Bab39] that relate the presence of linear series on a
curve to its geometric properties. A major change in perspective occurred during
the twentieth century, as the field shifted from studying fixed to general curves –
that is, general points in the moduli space of curves Mg. Many of the major results
in the field, such as the Brill-Noether [GH80] and Gieseker-Petri [Gie82] Theorems,
remained open for nearly a century as they awaited this new point of view.

A major milestone in the geometry of general curves was the development of limit
linear series by Eisenbud and Harris [EH86]. This theory allows one to study linear
series on general curves by studying one-parameter degenerations where the central
fiber is a special kind of singular curve, known as a curve of compact type. One
property of curves of compact type is that if they have positive genus then they must
have components of positive genus. Shortly after the development of limit linear
series, many researchers became interested in a different type of nodal curve, which
have only rational components, and where the interesting geometric data is encoded
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by the combinatorics of how the components meet each other. Early examples
using so-called graph curves to establish properties of general curves include Bayer
and Eisenbud’s work on Green’s Conjecture for the general curve [BE91], and the
Ciliberto-Harris-Miranda result on the surjectivity of the Wahl map [CHM88].

Much like the theory of limit linear series does for curves of compact type, the
recent development of tropical Brill-Noether theory provides a systematic approach
to this kind of degeneration argument [BN07, Bak08b, AB12]. A major goal of this
survey is to introduce the basic definitions and techniques of this theory, as well
as describing some recent applications to the geometry of general curves and the
behavior of Weierstrass points in degenerating families. Degeneration arguments
also play a major role in arithmetic geometry, and we also survey how linear series
on tropical curves can be used to study rational points on curves.

Here are just a few of the new and interesting theorems which have been proved
in recent years with the aid of the theory of linear series on tropical curves.

1. The Maximal Rank Conjecture for quadrics. In [JP], Jensen and Payne prove
that for fixed g, r, and d, if C is a general curve of genus g and V ⊂ L(D) is
a general linear series on C of rank r and degree d, then the multiplication map
µ2 : Sym2V → L(2D) is either injective or surjective.

2. Uniform boundedness for rational points of curves of small Mordell-Weil rank.
In [KRZB15], Katz, Rabinoff, and Zureick–Brown prove that if C/Q is a curve of
genus g with Mordell-Weil rank at most g−3, then #C(Q) ≤ 76g2−82g+22. This
is the first such bound depending only on the genus of C.

3. Non-Archimedean equidistribution of Weierstrass points. In [Ami14], Amini
proves that if C is an algebraic curve over C((t)) and L is an ample line bundle
on C, then the Weierstrass points of L⊗n become equidistributed with respect to
the Zhang measure on the Berkovich analytic space Can as n goes to infinity. This
gives precise asymptotic information on the limiting behavior of Weierstrass points
in degenerating one-parameter families.

4. Mnëv universality for the lifting problem for divisors on graphs. In [Car15],
Cartwright shows that if X is a scheme of finite type over SpecZ, there exists a
graph G and a rank 2 divisor D0 on G such that, for any infinite field k, there
are a curve C over k((t)) and a rank 2 divisor D on C tropicalizing to G and D0,
respectively, if and only if X has a k-point.

We will discuss the proofs of these and other results after going through the
foundations of the basic theory. To accommodate readers with various interests,
this survey is divided into three parts. The first part covers the basics of tropical
Brill-Noether theory, with an emphasis on combinatorial aspects and the relation
to classical algebraic geometry. The second part covers more advanced topics, in-
cluding the nonarchimedean Berkovich space perspective, tropical moduli spaces,
and the theory of metrized complexes. Each of these topics is an important part of
the theory, but is not strictly necessary for many of the applications discussed in
Part 3, and the casual reader may wish to skip Part 2 on the first pass. The final
part covers applications of tropical Brill-Noether theory to problems in algebraic
and arithmetic geometry. For the most part, the sections in Part 3 are largely inde-
pendent of each other and can be read in any order. Aside from a few technicalities,
the reader can expect to follow the applications in Sections 9, 10 and 11, as well as
most of Section 12, without reading Part 2.
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Part 1. Introductory Topics

2. Jacobians of Finite Graphs

2.1. Degeneration of line bundles in one-parameter families. A recurring
theme in the theory of linear series on curves is that it is very important to un-
derstand the behavior of line bundles on generically smooth one-parameter families
of curves. One of the key facts about such families is the semistable reduction
theorem, which asserts that after a finite base change, one can guarantee that the
singularities of the family are “as nice as possible”, i.e., the total space is regular
and the fibers are reduced and have only nodal singularities (see [HM98, Chapter
3C]). The questions we want to answer about such families are all local on the base,
so it is convenient to consider the following setup. Let R be a discrete valuation
ring with field of fractions K and residue field κ, let C be a smooth proper and
geometrically integral curve over K, and let C be a regular strongly semistable model
for C, that is, a proper flat R-scheme with general fiber C satisfying:

(1) The total space C is regular.
(2) The central fiber C0 of C is strongly semistable, i.e., the irreducible compo-

nents of C0 are all smooth and C0 has only nodes as singularities.1

By the semistable reduction theorem, a regular strongly semistable model for C
always exists after passing to a finite extension of K.

Let L be a line bundle on the general fiber C. Because the total space C is regular,
there exists an extension L of L to the family C. One can easily see, however,
that this extension is not unique – one can obtain other extensions by twisting by
components of the central fiber. More concretely, if L is an extension of L and
Y ⊂ C0 is an irreducible component of the central fiber, then L(Y ) = L ⊗ OC(Y )
is also an extension of L.

To understand the effect of the twisting operation, we consider the dual graph
of the central fiber C0. One constructs this graph by first assigning a vertex vZ
to each irreducible component Z of C0, and then drawing an edge between two
vertices for every node at which the corresponding components intersect.

Example 2.1. If C0 is a union of m general lines in P2, its dual graph is the
complete graph on m vertices. Indeed, every pair of lines meets in one point, so
between every pair of vertices in the dual graph, there must be an edge.

Example 2.2. If C0 ⊂ P1 × P1 is a union of a lines in one ruling and b lines in
the other ruling, then the dual graph is the complete bipartite graph Ka,b. This is
because a pair of lines in the same ruling do not intersect, whereas a pair of lines
in opposite rulings intersect in one point.

Example 2.3. Let C0 be the union of the −1 curves on a del Pezzo surface of
degree 5. In this case, the dual graph of C0 is the well-known Petersen graph.

2.2. Divisors and linear equivalence on graphs. In this paper, by a graph we
will always mean a finite connected graph which is allowed to have multiple edges
between pairs of vertices but is not allowed to have any loop edges. Given a graph
G, we write Div(G) for the free abelian group on the vertices of G. An element D
of Div(G) is called a divisor on G, and is written as a formal sum

D =
∑

v∈V (G)

D(v)v,

1We say C0 is semistable if it is reduced and has only nodes as singularities.
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where the coefficients D(v) are integers. The degree of a divisor D is defined to be
the sum

deg(D) =
∑

v∈V (G)

D(v).

Returning now to our family of curves, let us fix for a moment an extension L
of our line bundle L. We define a corresponding divisor mdeg(L) on G, called the
multi-degree of L, by the formula

mdeg(L) =
∑
Z

(degL|Z) vZ ,

where the sum is over all irreducible components Z of C0. The quantity degL|Z
can also be interpreted as the intersection multiplicity of L with Z considered as
a (vertical) divisor on the surface C. Note that the degree of mdeg(L) is equal to
deg(L).

We now ask ourselves how mdeg(L) changes if we replace L by a different exten-
sion. Since any two such extensions differ by a sequence of twists by components of
the central fiber, it suffices to study the effect of twisting by one such component
Y . Given a vertex v of a graph, let val(v) denote its valence. As the central fiber
C0 is a principal divisor on C, we have

mdeg(L(Y )) = mdeg(L) +
∑
Z

(Y · Z) vZ

with

Y · Z =

{
− val(vY ) if Z = Y
|Z ∩ Y | if Z 6= Y

}
.

The corresponding operation on the dual graph is known as a chip-firing move.
This is because we may think of a divisor on the graph as a configuration of chips
(and anti-chips) on the vertices. In this language, the effect of a chip-firing move
is that a vertex v “fires” one chip along each of the edges emanating from v. This
decreases the number of chips at v by the valence of v, and increases the number
of chips at each of the neighbors w of v by the number of edges between v and w.

Motivated by these observations, we say that two divisors D and D′ on a graph
G are equivalent, and we write D ∼ D′, if one can be obtained from the other by
a sequence of chip-firing moves. We define the Picard group Pic(G) of G to be the
group of divisors on G modulo equivalence. Note that the degree of a divisor is
invariant under chip-firing moves, so there is a well defined homomorphism

deg : Pic(G)→ Z.

We will refer to the kernel Pic0(G) of this map as the Jacobian Jac(G) of the graph
G. This finite abelian group goes by many different names in the mathematical
literature – in combinatorics, it is commonly referred to as the sandpile group or
the critical group of G.

Remark 2.4. There is a tremendous amount of combinatorial literature concerning
Jacobians of graphs. As our focus is on applications in algebraic geometry, however,
we will not go into many details here – we refer the reader to [BN07, HLM+08] and
the references therein. We cannot resist mentioning one remarkable fact, however:
the cardinality of Jac(G) is the number of spanning trees in G. (This is actually a
disguised form of Kirchhoff’s celebrated Matrix-Tree Theorem.)
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Our discussion shows that for any two extensions of the line bundle L, the
corresponding multidegrees are equivalent divisors on the dual graph G. There is
therefore a well-defined degree-preserving map

Trop : Pic(C)→ Pic(G),

which we refer to as the specialization or tropicalization map.

It is useful to reformulate the definition of equivalence of divisors on G as follows.
For any function f : V (G)→ Z, we define

ordv(f) :=
∑

w adjacent to v

f(v)− f(w)

and

div(f) :=
∑

v∈V (G)

ordv(f)v.

Divisors of the form div(f) are known as principal divisors, and two divisors are
equivalent if and only if their difference is principal. The reason is that the divisor
div(f) can be obtained, starting with the 0 divisor, by firing each vertex v exactly
f(v) times.

2.3. Limit linear series and Néron models. The Eisenbud-Harris theory of
limit linear series focuses on the case where the dual graph of C0 is a tree. In this
case, the curve C0 is said to be of compact type.2 Although they would not have
stated it this way, a key insight of the Eisenbud-Harris theory is that the Jacobian
of a tree is trivial. Given a line bundle L of degree d on C, if the dual graph of
C0 is a tree then one can repeatedly twist to obtain a line bundle with any degree
distribution summing to d on the components of the central fiber. In particular,
given a component Y ⊂ C0, there exists a twist LY such that

degLY |Z =

{
d if Z = Y
0 if Z 6= Y

}
.

This observation is the jumping-off point for the basic theory of limit linear series.

At the other end of the spectrum is the maximally degenerate case where all of
the components of C0 have genus zero. In this case, the first Betti number of the
dual graph G (which we refer to from now on as the genus of G) is equal to the
geometric genus of the curve and essentially all of the interesting information about
degenerations of line bundles is combinatorial. At its core, tropical Brill-Noether
theory studies the behavior of line bundles on the curve C using the combinatorics
of their specializations to the graph G.

This discussion can also be understood in the context of Néron models. An
important theorem of Raynaud asserts (in the language of this paper) that the
group Φ of connected components of the special fiber J̄ of the Néron model of
J = Jac(C) is canonically isomorphic to Jac(G), where G is the dual graph of the

2The reason for the name compact type is that the Jacobian of a nodal curve C0 is an extension

of the Jacobian of the normalization of C0 by a torus of dimension equal to the first Betti number

of the dual graph. It follows that the Jacobian of C0 is compact if and only if its dual graph is a
tree.
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special fiber of C. This result can be summarized by the commutativity of the
following diagram:

(1) 0 // Prin(C) //

��

Div0(C) //

mdeg
��

J(K) //

��

0

0 // Prin(G) // Div0(G) // Jac(G) = Φ // 0

where the right vertical arrow is the canonical quotient map

J(K)→ J(K)/J 0(R) = Φ.

The tropical approach to Brill-Noether theory and the approach via the theory of
limit linear series are in some sense orthogonal. The former utilizes the component
group Φ, or its analytic counterpart, the tropical Jacobian, whereas classical limit
linear series are defined only when Φ is trivial. On the other hand, limit linear series
involve computations in the compact part of J̄ , which is trivial in the maximally
degenerate case.

Recent developments have led to a sort of hybrid of tropical and limit linear
series that can be used to study degenerations of line bundles to arbitrary nodal
curves. We will discuss these ideas in Section 8.

3. Jacobians of Metric Graphs

3.1. Behavior of dual graphs under base change. The field of fractions of a
DVR is never algebraically closed. For many applications, we will be interested
in Pic(CK) rather than Pic(CK), and we must therefore study the behavior of the
specialization map under base change.

Let K ′ be a finite extension of K, let R′ be the valuation ring of K ′, and let
CK′ = C ×K K ′. An important issue is that the new total space CK′ = C ×K K ′

may not be regular; it can pick up singularities at the nodes of the central fiber.
More specifically, if a point z on C corresponding to a node of the central fiber
has a local analytic equation of the form xy = π, where π is a uniformizer for
R, then a local analytic equation for z over R′ will be xy = (π′)e, where π′ is
a uniformizer for R′ and e is the ramification index of the extension K ′/K. A
standard computation shows that we can resolve such a singularity by a chain of
e−1 blowups. Repeating this procedure for each singular point of the special fiber,
we obtain a regular strongly semistable model C′ for CK′ . The dual graph G′ of the
central fiber of C′ is obtained by subdividing each edge of the original dual graph
G e− 1 times. In other words, if we assign a length of 1 to each edge of G, and a
length of 1

e to each edge of G′, then G and G′ are isomorphic as metric graphs.

A metric graph Γ is, roughly speaking, a finite graph G in which each edge e has
been identified with a real interval Ie of some specified length `e > 0. The points
of Γ are the vertices of G together with all points in the relative interiors of the
intervals Ie. More precisely, a metric graph is an equivalence class of finite edge-
weighted graphs, where two weighted graphs G and G′ give rise to the same metric
graph if they have a common length-preserving refinement. A finite weighted graph
G representing the equivalence class of Γ is called a model for Γ.

Example 3.1. Let K = C((t)), and consider the family C : xy = tz2 of smooth
conics degenerating to a singular conic in P2. The dual graph G of the central fiber
consists of two vertices connected by a single edge. The divisor D on the general
fiber cut out by the line y = x is not K-rational and specializes to twice the node
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Figure 1. The dual graph of the central fiber in Example 3.1
initially (on the left), and after base change followed by resolution
of the singularity (on the right). If we give the segment on the
left a length of 1 and each of the segments on the right a length of
1/2, then both weighted graphs are models for the same underlying
metric graph Γ, which is a closed segment of length 1.

of the central fiber. If K ′ = C((t
1
2 )), then the total space of the family C ×K K ′

has a singularity at the node of the central fiber. This singularity can be resolved
by blowing up the node, and the dual graph G′ of the new central fiber is a chain
of 3 vertices connected by two edges, with the new vertex corresponding to the
exceptional divisor of the blowup (see Figure 1). The base change D′ of D to K ′

specializes to a sum of two points on the exceptional divisor.

3.2. Divisors and linear equivalence on metric graphs. Let Γ be a metric
graph. A divisor D on Γ is a formal linear combination

D =
∑
v∈Γ

D(v)v

with D(v) ∈ Z for all v ∈ Γ and D(v) = 0 for all but finitely many v ∈ Γ. Let
PL(Γ) denote the set of continuous, piecewise linear functions f : Γ → R with
integer slopes. The order ordv(f) of a function f at a point v ∈ Γ is the sum of
its outgoing slopes along the edges containing v. As in the case of finite graphs, we
write

div(f) :=
∑
v∈Γ

ordv(f)v.

A divisor is said to be principal if it is of the form div(f) for some f ∈ PL(Γ), and
two divisors D,D′ are equivalent if D−D′ is principal. We let Prin(Γ) denote the
subgroup of Div0(Γ) (the group of degree-zero divisors on Γ) consisting of principal
divisors. By analogy with the case of finite graphs, the group

Jac(Γ) := Div0(Γ)/Prin(Γ)

is called the (tropical) Jacobian of Γ.

Example 3.2. The Jacobian of a metric tree Γ is trivial. To see this, note that
given any two points P,Q ∈ Γ, there is a unique path from P to Q. One can
construct a continuous, piecewise linear function f that has slope 1 along this path,
and has slope 0 everywhere else. We then see that div(f) = Q − P , so any two
points on the tree are equivalent.

Example 3.3. A circle Γ is a torsor for its own Jacobian. To see this, fix a
point O ∈ Γ. Given two points P,Q ∈ Γ, there exists a continuous, piecewise
linear function f that has slope 1 on the interval from O and P , slope −1 on the
interval from some 4th point R to Q, and slope 0 everywhere else. We then have
div(f) = O + Q − (P + R), so P − Q ∼ R − O. It follows that every divisor of
degree zero is equivalent to a divisor of the form R−O for some point R. It is not
difficult to see that the point R is in fact unique.
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Figure 2. Slopes of a function f on a tree with div(f) = Q− P .

P Q

O

R

1

0 1

0

Figure 3. A function f on the circle with div(f) = O +Q− (P +R).

Note that if two divisors are equivalent in the finite graph G, then they are also
equivalent in the corresponding metric graph Γ, called the regular realization of G,
in which every edge of G is assigned a length of 1. It follows that there is a natural
inclusion ι : Pic(G) ↪→ Pic(Γ). As we saw above, the multidegree of a line bundle
L on CK can be identified with a divisor on some subdivision of G, which can in
turn be identified with a divisor on Γ. One can show that this yields a well-defined
map

Trop : Pic(CK)→ Pic(Γ)

whose restriction to Pic(C) coincides with the previously defined map

Trop : Pic(C)→ Pic(G)

via the inclusion ι.
One can see from this construction that principal divisors on C specialize to

principal divisors on Γ. More precisely, there is a natural way to define a map

trop : K(C)∗ → PL(Γ)

on rational functions such that

Trop(div(f)) = div(trop(f))

for every f ∈ K(C)∗. This is known as the Slope Formula, cf. Theorem 6.4 below.
We refer the reader to §6.3 for a formal definition of the map trop.

As we will see in Section 6, there is also a natural way to define a map Div(CK)→
Div(Γ) which induces the map Trop : Pic(CK)→ Pic(Γ). As with the map trop on
rational functions, the map Trop on divisors is most conveniently described using
Berkovich’s theory of non-Archimedean analytic spaces.

3.3. The tropical Abel-Jacobi Map. A 1-form on a graph G is an element of
the real vector space generated by the formal symbols de, as e ranges over the
oriented edges of G, subject to the relations that if e, e′ represent the same edge
with opposite orientations then de′ = −de. After fixing an orientation on G, a
1-form ω =

∑
ωede is called harmonic if, for all vertices v, the sum

∑
ωe over the
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v0 v0

Figure 4. Two metric graphs Γ, Γ′ of genus 2.

outgoing edges at v is equal to 0. Denote by Ω(G) the space of harmonic 1-forms
on G. It is well-known that Ω(G) is a real vector space of dimension equal to the
genus g of G.

If G and G′ are models for the same metric graph Γ, then Ω(G′) is canonically
isomorphic to Ω(G). We may therefore define the space Ω(Γ) of harmonic 1-forms on
Γ as Ω(G) for any weighted graph model G. Given an isometric path γ : [a, b]→ Γ,
any harmonic 1-form ω on Γ pulls back to a classical 1-form on the interval, and
we can thus define the integral

∫
γ
ω. Note that the definition of a harmonic 1-form

does not depend on the metric, but the integral
∫
γ
ω does.

Fix a base point v0 ∈ Γ. For any point v ∈ Γ, the integral∫ v

v0

ω

is well-defined up to a choice of path from v0 to v. This gives a map

AJv0 : Γ→ Ω(Γ)∗/H1(Γ,Z)

known as the tropical Abel-Jacobi map. Extending linearly to Div(Γ) and then
restricting to Div0(Γ), we obtain a map

AJ : Div0(Γ)→ Ω(Γ)∗/H1(Γ,Z)

which does not depend on the choice of a base point. As in the classical case of
Riemann surfaces, we have:

Tropical Abel-Jacobi Theorem. [MZ08] The map AJ is surjective and its kernel
is precisely Prin(Γ). Thus there is a canonical isomorphism

AJ : Div0(Γ)/Prin(Γ) ∼= Ω(Γ)∗/H1(Γ,Z)

between the Jacobian of Γ and a g-dimensional real torus.

Example 3.4. We consider the two metric graphs of genus 2 pictured in Figure 4.
In the first case, we can choose a basis ω1, ω2 of harmonic 1-forms by assigning the
integer 1 to one of the (oriented) loops, and the integer 0 to the other. We let η1, η2

be elements of the dual basis. We then see from the tropical Abel-Jacobi Theorem
that

Jac(Γ) ∼= R2/(Zη1 + Zη2).

A similar argument in the second case yields

Jac(Γ′) ∼= R2/(Z[η1 +
1

2
η2] + Z[

1

2
η1 + η2]).

Although the Jacobians of the metric graphs Γ and Γ′ from Example 3.4 are
isomorphic as abstract real tori, they are non-isomorphic as principally polarized
real tori in the sense of [MZ08]. In fact, there is an analogue of the Torelli theorem in
this context saying that up to certain “Whitney flips”, the Jacobian as a principally
polarized real torus determines the metric graph Γ; see [CV10]. The map AJv0 :
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vw

Figure 5. The linear system |2v + w| is not equidimensional.

Γ → Ω(Γ)∗/H1(Γ,Z) is harmonic (or balanced) in a certain natural sense; see e.g.
[BF11, Theorem 4.1]. This fact is used in the paper [KRZB15], about which we
will say more in §11.2. Basic properties of the tropical Abel-Jacobi map are also
used in important ways in [Cop14a] and [CJP14].

4. Ranks of Divisors

4.1. Linear systems. By analogy with algebraic curves, a divisor D =
∑
D(v)v

on a (metric) graph is called effective if D(v) ≥ 0 for all v, and we write D ≥ 0.
The complete linear series of a divisor D is defined to be

|D| = {E ≥ 0 | E ∼ D}.
Similarly, we write

R(D) = {f ∈ PL(Γ) | div(f) +D ≥ 0}
for the set of tropical rational functions with poles along the divisor D.

As explained in [GK08], the complete linear series |D| has the structure of a
compact polyhedral complex. However, this polyhedral complex often fails to be
equidimensional, as the following example shows.

Example 4.1. Consider the metric graph pictured in Figure 5, consisting of two
loops attached at a point v. Let D = 2v + w, where w is a point on the interior
of the first loop. The complete linear system is the union of two tori. The first,
which consists of divisors equivalent to D that are supported on the first loop, has
dimension two, while the other, which consists of divisors equivalent to D that have
positive degree on the second loop, has dimension one.

We now wish to define the rank of a divisor on a graph. As the previous example
shows, the appropriate definition should not be the dimension of the linear system
|D|, considered as a polyhedral complex.3 Instead, we note that a line bundle L
on an algebraic curve C has rank at least r if and only if, for every collection of
r points of C, there is a non-zero section of L that vanishes at those points. This
motivates the following definition.

Definition 4.2. Let D be a divisor on a (metric) graph. If D is not equivalent to
an effective divisor, we define its rank to be −1. Otherwise, we define r(D) to be
the largest non-negative integer r such that |D−E| 6= ∅ for all effective divisors E
of degree r.

Example 4.3. Even when a linear series is equidimensional, its dimension may
not be equal to the rank of the corresponding divisor. For example, consider the
metric graph pictured in Figure 6, consisting of a loop meeting a line segment in

3Another natural idea would be to try to define r(D) as one less than the “dimension” of R(D)

considered as a semimodule over the tropical semiring T consisting of R∪ {∞} together with the

operations of min and plus. However, this approach also faces significant difficulties. See [HMY12]
for a detailed discussion of the tropical semimodule structure on R(D).
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v

Figure 6. The vertex v moves in a one-dimensional family, but
has rank zero.

a vertex v. The linear system |v| is 1-dimensional, because v is equivalent to any
point on the line segment. The rank of v, however, is 0, because if w lies in the
interior of the loop, then v is not equivalent to w.

Remark 4.4. There are several other notions of rank in the literature related to
our setup of a line bundle on a degenerating family of curves. We mention, for
example, the generalized rank functions of Katz and Zureick-Brown [KZB13] and
the algebraic rank of Caporaso [Cap13]. The rank as defined here is sometimes
referred to as the combinatorial rank to distinguish it from these other invariants.

As in the case of curves, we write

W r
d (Γ) := {D ∈ Picd(Γ) | r(D) ≥ r}.

We similarly define the gonality of a graph to be the smallest degree of a divisor of
rank at least one. The Clifford index of the graph is

Cliff(Γ) := min{deg(D)− 2r(D) | r(D) > max{0,deg(D)− g + 1}}.

Remark 4.5. The definition of gonality above is sometimes called the divisorial
gonality, to distinguish it from the stable gonality, which is the smallest degree
of a harmonic morphism from a modification of the given metric graph to a tree.
The divisorial gonality is always less than or equal to the stable gonality, see e.g.
[ABBR14b].

4.2. Specialization. One of the key properties of the combinatorial rank is its
behavior under specialization. Note that the specialization map takes effective line
bundles to effective divisors. Combining this with the fact that it takes principal
divisors to principal divisors, we see that, for any divisor D on C, we have

Trop |D| ⊆ |Trop(D)| and

tropL(D) ⊆ R(Trop(D)).

Combining this with the definition of rank yields the following semicontinuity result.

Specialization Theorem. [Bak08b] Let D be a divisor on C. Then

r(D) ≤ r(Trop(D)).

Another way of stating this is that Trop(W r
d (C)) ⊆ W r

d (Γ). The power of the
Specialization Theorem lies in the fact that the rank of the divisor D is an algebro-
geometric invariant, whereas the rank of Trop(D) is a combinatorial invariant. We
can therefore use techniques from each field to inform the other. For example, an
immediate consequence of specialization is the following fact.

Theorem 4.6. Let Γ be a metric graph of genus g, and let d, r be positive integers
such that g − (r + 1)(g − d+ r) ≥ 0. Then W r

d (Γ) 6= ∅.
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Proof. As we will se in Corollary 7.2, there exists a curve C over a discretely
valued field K, and a semistable R-model C of C such that the dual graph of the
central fiber is isometric to Γ. A well-known theorem of Kempf and Kleiman-
Laksov [Kem71, KL74] asserts that W r

d (C) 6= ∅. It follows from Theorem 4.2 that
W r
d (Γ) 6= ∅ as well. �

Corollary 4.7. A metric graph of genus g has gonality at most d g+2
2 e.

Remark 4.8. We are unaware of a purely combinatorial proof of Theorem 4.6.
There are many reasons that such a proof would be of independent interest. For
example, a combinatorial proof could shed some light on whether the analogous
statement is true for finite graphs, as conjectured in [Bak08b, Conjectures 3.10,
3.14].4

4.3. Riemann-Roch. Another key property of the combinatorial rank is that it
satisfies a tropical analogue of the Riemann-Roch theorem:

Tropical Riemann-Roch Theorem. [GK08, MZ08] Let Γ be a metric graph of
genus g, and let KΓ :=

∑
v∈Γ(val(v)− 2)v be the canonical divisor on Γ. Then for

every divisor D on Γ,

r(D)− r(KΓ −D) = deg(D)− g + 1.

The first result of this kind was the discrete analogue of Theorem 4.3 for finite
(non-metric) graphs proved in [BN07]. In the Baker-Norine Riemann-Roch theo-
rem, one defines r(D) for a divisor D on a graph G exactly as in Definition 4.2,
the subtle difference being that the effective divisor E is restricted to the vertices
of G. Gathmann and Kerber [GK08] showed that one can deduce Theorem 4.3
from the Baker-Norine theorem using a clever approximation argument, whereas
Mikhalkin and Zharkov [MZ08] generalized the method of proof from [BN07] to
the metric graph setting. Later on, Hladky-Kral-Norine [HKN13] and Luo [Luo11]
proved theorems which imply that one can also deduce Riemann-Roch for graphs
from tropical Riemann-Roch. (We will discuss Luo’s theory of rank-determining
sets in §5.2.) So in retrospect, one can say that in some sense the Baker-Norine
theorem and the theorem stated above are equivalent.

Baker and Norine’s strategy of proof for Theorem 4.3, as modified by Mikhalkin
and Zharkov, is to first show that if O is an orientation of the graph, then

DO :=
∑

v∈V (G)

(indeg(v)− 1)v

is a divisor of degree g−1, and this divisor has rank −1 if and only if the orientation
O is acyclic. This fact helps to establish the Riemann-Roch Theorem in the case of
divisors of degree g−1, which serves as the base case for the more general argument.
It is interesting to note that the Tropical Riemann-Roch Theorem has thus far has
resisted attempts to prove it via classical algebraic geometry. At present, neither
the Tropical Riemann-Roch Theorem nor the classical Riemann-Roch Theorem for
algebraic curves is known to imply the other.

If C is a strongly semistable R-model for a curve C over a discretely valued field
K with the property that all irreducible components of the special fiber C0 have

4Sam Payne has pointed out that there is a gap in the proof of Conjectures 3.10 and 3.14 of

[Bak08b] given in [Cap12]. The claim on page 82 that W r
d,φ has nonempty fiber over b0 does not

follow from the discussion that precedes it. A priori, the fiber of W r
d,φ over b0 might be contained

in the boundary P dφ r Picdφ of the compactified relative Picard scheme.



14 MATTHEW BAKER AND DAVID JENSEN

genus 0, then the multidegree of the relative dualizing sheaf Ω1
C/R is equal to the

canonical divisor of the graph G. This is a simple consequence of the adjunction

formula, which shows more generally that mdeg(Ω1
C/R) = K#

(G,ω) in the terminology

of §4.4 below. If K is not discretely valued, this is still true with the right definition
of the sheaf Ω1

C/R (see [KRZB15]). This “explains” in some sense why there is a

canonical divisor on a metric graph while on an algebraic curve there is merely a
canonical divisor class.

It is clear from the definition of rank that if D and E are divisors on a metric
graph Γ having non-negative rank, then r(D +E) ≥ r(D) + r(E). Combining this
with tropical Riemann-Roch, one obtains a tropical version of Clifford’s inequality:

Tropical Clifford’s Theorem. Let D be a special divisor on a metric graph Γ,
that is, a divisor such that both D and KΓ −D have nonnegative rank. Then

r(D) ≤ 1

2
deg(D).

Remark 4.9. The classical version of Clifford’s Theorem is typically stated in two
parts. The first part is the inequality above, while the second part states that,
when equality holds, either D ∼ 0, D ∼ KC , or the curve C is hyperelliptic and the
linear equivalence class of D is a multiple of the unique g1

2. The same conditions for
equality hold in the tropical case as well, by a recent theorem of Coppens, but the
proof is quite subtle as the classical methods do not work in the tropical context.
See [Cop14a] for details.

Note that, as in the case of curves, the Riemann-Roch Theorem significantly
limits the possible ranks that a divisor of fixed degree on a metric graph may have.
For example, a divisor of negative degree necessarily has rank −1, so a divisor of
degree d > 2g − 2 must have rank d − g. It is only in the intermediate range
0 ≤ d ≤ 2g − 2 where there are multiple possibilities for the rank.

Example 4.10. The canonical divisor on a circle is trivial, and it is the only
divisor of degree 0 with non-negative rank. If D is a divisor of degree d > 0, then
by Riemann-Roch D has rank d− 1. This can also be seen using the fact that the
circle is a torsor for its Jacobian, as in Example 3.3: if E is an effective divisor
of degree d − 1, then there is a unique point P such that D − E ∼ P , and hence
r(D) ≥ d− 1.

Example 4.11. The smallest genus for which the rank of an effective divisor is
not completely determined by the degree is genus 3. Pictured in Figure 7 are two
examples of genus 3 metric graphs, the first of which is hyperelliptic, meaning that
it admits a divisor of degree 2 and rank 1, and the second of which is not. For
the first graph, one can check by hand that the sum of the two vertices on the left
has rank at least 1, and it cannot have rank higher than 1 by Clifford’s Theorem.
We will show that the second graph is not hyperelliptic in Example 5.4, as the
argument will require some techniques for computing ranks of divisors that we will
discuss in the next section.

4.4. Divisors on vertex-weighted graphs. In [AC13], Amini and Caporaso for-
mulate a refinement of the Specialization Theorem which takes into account the
genera of the components of the special fiber. In this section we describe their
result following the presentation in [AB12].

A vertex-weighted metric graph is a pair (Γ, ω) consisting of a metric graph Γ
and a weight function ω : Γ → Z≥0 such that ω(x) = 0 for all but finitely many
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Figure 7. Two metric graphs of genus 3, the first of which is
hyperelliptic, and the second of which is not. (All edges have length
1.)

x ∈ Γ. Following [AC13], we define a new metric graph Γ# by attaching ω(x) loops
of arbitrary positive length at each point x ∈ Γ. There is a natural inclusion of Γ
into Γ#. The canonical divisor of (Γ, ω) is defined to be

K# = KΓ +
∑
x∈Γ

2ω(x),

which can naturally be identified with the canonical divisor of KΓ# restricted to Γ.
Its degree is 2g# − 2, where g# = g(Γ) +

∑
x∈Γ ω(x) is the genus of Γ#.

Following [AC13], the weighted rank r# of a divisor D on Γ is defined to be
r#(D) := rΓ#(D). By [AB12, Corollary 4.12], we have the more intrinsic descrip-
tion

r#(D) = min
0≤E≤W

(
deg(E) + rΓ(D − 2E)

)
,

where W =
∑
x∈Γ ω(x)(x).

The Riemann-Roch theorem for Γ# implies the following “vertex-weighted”
Riemann-Roch theorem for Γ:

r#(D)− r#(K# −D) = deg(D) + 1− g#.

If C is a curve over K, together with a semistable model C over R, we define the
associated vertex-weighted metric graph (Γ, ω) by taking Γ to be the skeleton of C
and defining the weight function ω by ω(v) = gv. With this definition, the genus of
the weighted metric graph (Γ, ω) is equal to the genus of C and we have trop(KC) ∼
K# on Γ [AB12, §4.7.1]. The following weighted version of the Specialization
Theorem, inspired by the results of [AC13], is proved in [AB12, Theorem 4.13]:

Weighted Specialization Theorem. For every divisor D ∈ Div(C), we have
rC(D) ≤ r#(trop(D)).

5. Combinatorial Techniques

The tropical approach to degeneration of line bundles in algebraic geometry
derives its power from the combinatorial tools which one has available, many of
which have no classical analogues. We describe some of these tools in this section.

5.1. Reduced divisors and Dhar’s burning algorithm.

Definition 5.1. Let G be a finite graph. Given a divisor D ∈ Div(G) and a vertex
v of G, we say that D is v-reduced if

(RD1) D(w) ≥ 0 for every w 6= v, and
(RD2) for every non-empty set A ⊆ V (G)r {v} there is a vertex w ∈ A such that

outdegA(w) > D(w).
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Here outdegA(w) denotes the outdegree of w with respect to A, i.e., the number
of edges connecting w ∈ A to a vertex not in A. The following important result
shows that v-reduced divisors form a distinguished set of representatives for linear
equivalence classes of divisors on G:

Lemma 5.2. [BN07, Proposition 3.1] Every divisor on G is equivalent to a unique
v-reduced divisor.

If D has nonnegative rank, the v-reduced divisor equivalent to D is the divisor
in |D| that is lexicographically “closest” to v. It is a discrete analogue of the unique
divisor in a classical linear series |D| with the highest possible order of vanishing
at a given point p ∈ C.

There is a simple algorithm for determining whether a given divisor satisfying
(RD1) above is v-reduced, known as Dhar’s burning algorithm. For w 6= v, imag-
ine that there are D(w) buckets of water at w. Now, light a fire at v. The fire
starts spreading through the graph, burning through an edge as soon as one of its
endpoints is burnt, and burning a vertex w if the number of burnt edges adjacent
to w is greater than D(w) (that is, there is not enough water to fight the fire).
The divisor D is v-reduced if and only if the fire consumes the whole graph. For a
detailed account of this algorithm, we refer to [Dha90] and the more recent [BS13,
Section 5.1].

There is a completely analogous set of definitions and results for metric graphs.
Let Γ be a metric graph, let D be a divisor on Γ, and choose a point v ∈ Γ (which
need not be a vertex). We say that D is v-reduced if the two conditions from
Definition 5.1 hold, with the second condition replaced by

(RD2′) for every closed, connected, non-empty set A ⊆ Γ r {v} there is a point
w ∈ A such that outdegA(w) > D(w).

It is not hard to see that condition (RD2′) is equivalent to requiring that for
every non-constant tropical rational function f ∈ R(Γ) with a global maximum at
v, the divisor D′ := D + div(f) does not satisfy (RD1), i.e., there exists w 6= v in
Γ such that D′(w) < 0.

The analogue of Lemma 5.2 remains true in the metric graph context: every
divisor on Γ is equivalent to a unique v-reduced divisor. Moreover, Dhar’s burning
algorithm as formulated above holds almost verbatim for metric graphs: the fire
starts spreading through Γ, getting blocked at a point w ∈ Γ iff the number of
burnt tangent directions at w is less than or equal to D(w); the divisor D is v-
reduced if and only if the fire consumes all of Γ.

We note the following important fact, which is useful for computing ranks of
divisors.

Lemma 5.3. Let D be a divisor on a finite or metric graph, and suppose that D
is v-reduced for some v. If D has non-negative rank, then D(v) ≥ r(D).

Example 5.4. Let Γ be the complete graph on 4 vertices endowed with arbitrary
edge lengths. We can use the theory of reduced divisors to show that Γ is not
hyperelliptic, justifying one of the claims in Example 4.11. Suppose that there
exists a divisor D on Γ of degree 2 and rank 1 and choose a vertex v. Since D has
rank 1, D ∼ D′ := v+v′ for some v′ ∈ Γ. Now, let w 6= v, v′ be a vertex. Note that
there are at least two paths from w to v that do not pass through v′, and if v = v′,
there are three. It follows by Dhar’s burning algorithm that D′ is w-reduced. But
D′(w) = 0, contradicting the fact that D (and hence D′) has rank 1.



DEGENERATIONS OF LINEAR SERIES FROM THE TROPICAL POINT OF VIEW 17

v1

v2

v3

v4

v5

1

1

v1

v2

v3

v4

v5

2

v1

v2

v3

v4

v5

1

1

Figure 8. Using Dhar’s burning algorithm to compute the v5-
reduced divisor equivalent to v1 +v2. The burnt vertices after each
iteration are colored white.

If a given divisor is not v-reduced, Dhar’s burning algorithm provides a method
for finding the unique equivalent v-reduced divisor. In the case of finite graphs, after
performing Dhar’s burning algorithm, if we fire the vertices that are left unburnt
we obtain a divisor that is lexicographically closer to the v-reduced divisor, and
after iterating the procedure a finite number of times, it terminates with the v-
reduced divisor (cf. [BS13]). For metric graphs, there is a similar procedure but
with additional subtleties — we refer the interested reader to [Luo11] and [Bac14a].

Example 5.5. Consider the finite graph depicted in Figure 8, consisting of two
triangles meeting at a vertex v3. We let D = v1 + v2, and compute the v5-reduced
divisor equivalent to D. After performing Dhar’s burning algorithm once, we see
that vertices v1 and v2 are left unburnt. Firing these, we see that D is equivalent to
2v3. Performing Dhar’s burning algorithm a second time, all three of the vertices
v1, v2, v3 are not burnt. Firing these, we obtain the divisor v4 + v5. A third run of
Dhar’s burning algorithm shows that v4 + v5 is v5-reduced.

Although we describe it here for finite graphs, this procedure has a natural
analogue for metric graphs as well, as described in [Luo11, Algorithm 2.5].

5.2. Rank-determining sets. The definition of the rank of a divisor on a finite
graph G implies easily that there is an algorithm for computing it.5 Indeed, since
there are only a finite number of effective divisors E of a given degree on G, we are
reduced to the problem of determining whether a given divisor is equivalent to an
effective divisor or not. This problem can be solved in polynomial time by using
the iterated version of Dhar’s algorithm described above to compute the v-reduced
divisor D′ equivalent to D for some vertex v. If D′(v) < 0 then |D| = ∅, and
otherwise |D| 6= ∅.

If one attempts to generalize this algorithm to the case of metric graphs, there is
an immediate problem, since there are now an infinite number of effective divisors
E to test. The idea behind rank-determining sets is that it suffices, in the definition
of r(D), to restrict to a finite set of effective divisors E.

Definition 5.6. Let Γ be a metric graph. A subset A ⊆ Γ is a rank-determining
set if, for any divisor D on Γ, D has rank at least r if and only if |D −E| 6= ∅ for
every effective divisor E of degree r supported on A.

In [Luo11], Luo provides a criterion for a subset of a metric graph to be rank-
determining. A different proof of Luo’s criterion has been given recently by Back-
man [Bac14b]. Luo defines a special open set to be a connected open set U ⊆ Γ

5Though there is no known efficient algorithm; indeed, it is proved in [KT14] that this problem
is NP-hard.



18 MATTHEW BAKER AND DAVID JENSEN

such that every connected component X ⊆ ΓrU contains a boundary point v such
that outdegX(v) ≥ 2.

Theorem 5.7. [Luo11] A subset A ⊆ Γ is rank-determining if and only if all
nonempty special open subsets of Γ intersect A.

Corollary 5.8. Let G be a model for a metric graph Γ. If G has no loops, then
the vertices of G are a rank-determining set.

There are lots of other interesting rank-determining sets besides vertices of mod-
els.

Example 5.9. Let G be a model for a metric graph Γ. Choose a spanning tree
of G and let e1, . . . , eg be the edges in the complement of the spanning tree. For
each such edge ei, choose a point vi in its interior, and let w be any other point of
Γ. Then the set A = {v1, . . . , vg} ∪ {w} is rank-determining. This construction is
used, for example, in [Cop14a].

Example 5.10. Let G be a bipartite finite graph, and let Γ be a metric graph
having G as a model. If we fix a 2-coloring of the vertices of G, then the vertices of
one color are a rank-determining set. This is the key observation in [Jen14], in which
the second author shows that the Heawood graph admits a divisor of degree 7 and
rank 2, regardless of the choice of edge lengths. The interest in this example arises
because it shows that there is a non-empty open subset of the (highest-dimensional

component of the) moduli space M trop
8 containing no Brill-Noether general metric

graph. (See §7.1 for a description of M trop
g .)

5.3. Tropical independence. Many interesting questions about algebraic curves
concern the ranks of linear maps between the vector spaces L(D). For example,
both the Gieseker-Petri Theorem and the Maximal Rank Conjecture are statements
about the rank of the multiplication maps

µ : L(D)⊗ L(D′)→ L(D +D′)

for certain pairs of divisors D,D′ on a general curve.

One simple strategy for showing that a map, such as µ, has rank at least k is
to carefully choose k elements of the image, and then check that they are linearly
independent. To this end, we formulate a notion of tropical independence, which
gives a sufficient condition for linear independence of rational functions on a curve
C in terms of the associated piecewise linear functions on the metric graph Γ.

Definition 5.11. [JP14] A set of piecewise linear functions {f1, . . . , fk} on a metric
graph Γ is tropically dependent if there are real numbers b1, . . . , bk such that the
minimum

min{f1(v) + b1, . . . , fk(v) + bk}
occurs at least twice at every point v in Γ.

If there are no such real numbers b1, . . . , bk then we say {f1, . . . , fk} is tropically
independent. We note that linearly dependent functions on C specialize to tropically
dependent functions on Γ. Although the definition of tropical independence is
merely a translation of linear dependence into tropical language, one can often
check tropical independence using combinatorial methods. The following lemma
illustrates this idea.

Lemma 5.12. [JP14] Let D be a divisor on a metric graph Γ, with f1, . . . , fk
piecewise linear functions in R(D), and let

θ = min{f1, . . . , fk}.
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Let Γj ⊂ Γ be the closed set where θ = fj, and let v ∈ Γj. Then the support of
div(θ) +D contains v if and only if v belongs to either

(1) the support of div(fj) +D, or
(2) the boundary of Γj.

5.4. Break divisors. Another useful combinatorial tool for studying divisor classes
on graphs and metric graphs is provided by the theory of break divisors, which
was initiated by Mikhalkin–Zharkov in [MZ08] and studied further by An–Baker–
Kuperberg–Shokrieh in [ABKS14]. Given a metric graph Γ of genus g, fix a model
G for Γ. For each spanning tree T of G, let ΣT be the image of the canonical map∏

e 6∈T

e→ Divg+(Γ)

sending (p1, . . . , pg) to p1 + · · · + pg. (Here Divg+(Γ) denotes the set of effective
divisors of degree g on Γ and e denotes a closed edge of G, so the points pi are
allowed to be vertices of G.) We call B(Γ) :=

⋃
T ΣT the set of break divisors on

Γ. The set of break divisors does not depend on the choice of the model G. The
following result shows that the natural map B(Γ) ⊂ Divg+(Γ)→ Picg(Γ) is bijective:

Theorem 5.13. [MZ08, ABKS14] Every divisor of degree g on Γ is linearly equiv-
alent to a unique break divisor.

Since B(Γ) is a compact subset of Divg+(Γ) and Picg(Γ) is also compact, it follows
from general topology that there is a canonical continuous section σ to the natural
map π : Divg(Γ) → Picg(Γ) whose image is precisely the set of break divisors. In
particular, every degree g divisor class on a metric graph Γ has a canonical effective
representative. The analogue of this statement in algebraic geometry is false: when
g = 2, for example, the natural map Sym2(C) = Div2

+(C)→ Pic2(C) is a birational
isomorphism which blows down the P1 corresponding to the fiber over the unique
g1

2, and this map has no section. This highlights an interesting difference between
the algebraic and tropical settings.

The proof of Theorem 5.13 in [MZ08] utilizes the theory of tropical theta func-
tions and the tropical analogue of Riemann’s theta constant. A purely combina-
torial proof based on the theory of q-connected orientations is given in [ABKS14],
and the combinatorial proof yields an interesting analogue of Theorem 5.13 for
finite graphs. If G is a finite graph and Γ is its regular realization, in which all
edges are assigned a length of 1, define the set of integral break divisors on G to be
B(G) = B(Γ) ∩Div(G). In other words, B(G) consists of all break divisors for the
underlying metric graph Γ which are supported on the vertices of G.

Theorem 5.14. [ABKS14] Every divisor of degree g on G is linearly equivalent to
a unique integral break divisor.

Since Picg(G) and Pic0(G) = Jac(G) have the same cardinality (the former is
naturally a torsor for the latter), it follows from Remark 2.4 that that the number
of integral break divisors on G is equal to the number of spanning trees of G, though
there is in general no canonical bijection between the two. A family of interesting
combinatorial bijections is discussed in [BW14].

If we define CT = π(ΣT ), then Picg(Γ) =
⋃
T CT by Theorem 5.13. It turns out

that the relative interior of each cell CT is (the interior of) a parallelotope, and if
T 6= T ′ then the relative interiors of CT and CT ′ are disjoint. Thus Picg(Γ) has
a polyhedral decomposition depending only on the choice of a model for Γ. The
maximal cells in the decomposition correspond naturally to spanning trees, and
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the minimal cells (i.e. vertices) correspond naturally to integral break divisors, as
illustrated in Figure 9.

2

2

Figure 9. A polyhedral decomposition of Pic2(Γ) for the metric
realization of the graph G obtained by deleting an edge from the
complete graph K4.

Remark 5.15. Mumford’s non-Archimedean analytic uniformization theory for
degenerating Abelian varieties [Mum72], as recently refined by Gubler and trans-
lated into the language of tropical geometry [Gub07, Gub10], shows that if G is
the dual graph of the special fiber of a regular R-model C for a curve C, then the
canonical polyhedral decomposition {CT } of Picg(Γ) gives rise to a canonical proper
R-model for Picg(C). Sam Payne has asked whether (up to the identification of
Picg with Pic0) this model coincides with the compactification of the Néron model
of Jac(C) introduced by Caporaso in [Cap08].

Break divisors corresponding to the relative interior of some cell CT are called
simple break divisors. They can be characterized as the set of degree g effective
divisors D on Γ such that Γ\supp(D) is connected and simply connected. Dhar’s
algorithm shows that such divisors are universally reduced, i.e., they are q-reduced
for all q ∈ Γ. A consequence of this observation and the Riemann-Roch theorem
for metric graphs is the following result, which is useful in tropical Brill-Noether
theory (cf. §9.2).

Proposition 5.16. Let Γ be a metric graph and let D be a simple break divisor
(or more generally any universally reduced divisor) on Γ. Then D has rank 0 and
KΓ −D has rank −1. Therefore:

(1) The set of divisor classes in Picg(Γ) having rank at least 1 is contained in
the codimension one skeleton of the polyhedral decomposition

⋃
T CT .

(2) If T is a spanning tree for some model G of Γ and D,E are effective divisors
with D + E linearly equivalent to KΓ, then there must be an open edge e◦

in the complement of T such that D has no chips on e◦.

Remark 5.17. The set B(Γ) of all break divisors on Γ can be characterized as the
topological closure in Divg+(Γ) of the set of universally reduced divisors.
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Remark 5.18. The real torus Picg(Γ) has a natural Riemannian metric. One can
compute the volume of Picg(Γ) in terms of a matrix determinant associated to G,
and the volume of the cell CT is the product of the lengths of the edges not in
T . Comparing the volume of the torus to the sums of the volumes of the cells CT
yields a dual version of a weighted form of Kirchhoff’s Matrix-Tree Theorem. See
[ABKS14] for details.

Part 2. Advanced Topics

We now turn to the more advanced topics of nonarchimedean analysis, tropical
moduli spaces, and metrized complexes. Each of these topics plays an important
role in tropical Brill-Noether theory, and we would be remiss not to mention them
here. We note, however, that most of the applications we discuss in Part 3 do not
require these techniques, and the casual reader may wish to skip this part on the
first pass.

6. Berkovich Analytic Theory

Rather than considering a curve over a discretely valued field and then exam-
ining its behavior under base change, we could instead start with a curve over an
algebraically closed field and directly associate a metric graph to it. We do this
by making use of Berkovich’s theory of analytic spaces. In addition to being a
convenient bookkeeping device for changes in dual graphs and specialization maps
under field extensions, Berkovich’s theory also allows for clean formulations of some
essential results in the theory of tropical linear series, such as the Slope Formula
(Theorem 6.4 below). The theory also furnishes a wealth of powerful tools for
understanding the relationship between algebraic curves and their tropicalizations.

6.1. A quick introduction to Berkovich spaces. We let K be a field which is
complete with respect to a non-Archimedean valuation

val : K∗ → R.

We let R ⊂ K be the valuation ring, κ the residue field, and | · | = exp(−val) the
corresponding norm on K.

IfX = Spec (A) is an affine scheme overK, we define its Berkovich analytification
Xan to be the set of multiplicative seminorms on the K-algebra A extending the
given absolute value on K, endowed with the weakest topology such that the map
Xan → R defined by | · |x 7→ |f |x is continuous for all f ∈ A. One can globalize this
construction to give a Berkovich analytification of an arbitrary scheme of finite type
over K. As we have defined it, the Berkovich analytification is merely a topological
space, but it can be equipped with a structure similar to that of a locally ringed
space and one can view Xan as an object in a larger category of (not necessarily
algebraizable) Berkovich analytic spaces. The space Xan is locally compact and
locally path-connected. It is Hausdorff if and only if X is separated, compact if
and only if X is proper, and path-connected if and only if X is connected. We refer
the reader to [Ber90, Con08] for more background information on Berkovich spaces
in general, and [Bak08a, BPR13] for more details in the special case of curves.

There is an alternate perspective on Berkovich spaces which is often useful and
highlights the close analogy with schemes. If K is a field, points of an affine K-
scheme Spec (A) can be identified with equivalence classes of pairs (L, φ) where L
is a field extension of K, φ : A→ L is a K-algebra homomorphism, and two pairs
(L1, φ1) and (L2, φ2) are equivalent if there are embeddings of L1 and L2 into a
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common overfield L′ and a homomorphism φ′ : A→ L′ such that the composition
φi : A → Li → L is φ′. Indeed, to a pair (L, φ) one can associate the prime ideal
ker(φ) of A, and to a prime ideal p of A one can associate the pair (K(p), φ) where
K(p) is the fraction field of A/p and φ : A→ K(p) is the canonical map.

Similarly, if K is a complete valued field, points of Spec (A)an can be identified
with equivalence classes of pairs (L, φ), where L is a complete valued field extension
of K and φ : A → L is a K-algebra homomorphism. The equivalence relation is
as before, except that L′ should be complete and extend the valuation on the Li.
Indeed, to a pair (L, φ) one can associate the multiplicative seminorm a 7→ |φ(a)|
on A, and to a multiplicative seminorm | · |x one can associate the pair (H(x), φ)
where H(x) is the completion of the fraction field of A/ker(| · |x) and φ : A→ H(x)
is the canonical map.

We will assume for the rest of this section that K is algebraically closed and
non-trivially valued. This ensures, for example, that the set X(K) is dense in
Xan.

If X/K is an irreducible variety, there is a dense subset of Xan consisting of
the set ValX of norms6 on the function field K(X) that extend the given norm on
K. Within the set ValX , there is a distinguished class of norms corresponding to
divisorial valuations. By definition, a valuation v on K(X) is divisorial if there
is an R-model X for X and an irreducible component Z of the special fiber of X
such that v(f) is equal to the order of vanishing of f along Z. The set of divisorial
points is known to be dense in Xan.

Remark 6.1. In this survey we have intentionally avoided the traditional perspec-
tive of tropical geometry, in which one considers subvarieties of the torus (K∗)n,
and the tropicalization is simply the image of coordinatewise valuation. We refer
the reader to [MS09] for a detailed account of this viewpoint on tropical geometry.
The Berkovich analytification can be thought of as a sort of intrinsic tropicalization
– one that does not depend on a choice of coordinates. This is reinforced by the
result that the Berkovich analytification is the inverse limit of all tropicalizations
[Pay09, FGP12].

6.2. Berkovich curves and their skeleta. If C/K is a complete nonsingular
curve, the underlying set of the Berkovich analytic space Can consists of the points
of C(K) together with the set ValC . We write

valy : K(C)∗ → R
for the valuation corresponding to a point y ∈ ValC = Can r C(K). The points in
C(K) are called type-1 points, and the remaining points of Can are classified into
three more types. We will not define points of type 3 or 4 in this survey article,
see e.g. [BPR13] for a definition. Note, however, that every point of Can becomes
a type-1 point after base-changing to a suitably large complete non-Archimedean
field extension L/K.

If the residue field of K(C) with respect to valy has transcendence degree 1 over
κ, then y is called a type-2 point. These are exactly the points corresponding to
divisorial valuations. Because it has transcendence degree 1 over κ, this residue field
corresponds to a unique smooth projective curve over κ, which we denote Cy. A
tangent direction at y is an equivalence class of continuous injections γ : [0, 1]→ Can

6Note that there is a one-to-one correspondence between norms on K(X) and valuations on

K(X), hence the terminology ValX . It is often convenient to work with (semi-)valuations rather
than (semi-)norms.
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sending 0 to y, where γ ∼ γ′ if γ([0, 1]) ∩ γ′([0, 1]) ) {y}. Closed points of Cy are
in one-to-one correspondence with tangent directions at y in Can.

There is natural metric on the set ValC which is described in detail in [BPR13].
This metric induces a topology that is much finer than the subspace topology
on ValC ⊂ Can, and with respect to this metric, ValC is locally an R-tree7 with
branching precisely at the type-2 points. The type-1 points should be thought of
as infinitely far away from every point of ValC .

The local R-tree structure arises in the following way. If C is an R-model for
C and Z is a reduced and irreducible irreducible component of the special fiber of
C, then Z corresponds to a type-2 point yZ of C. Blowing up a nonsingular closed
point of Z (with respect to some choice of a uniformizer $ ∈ mR) gives a new point
yZ′ of Can corresponding to the exceptional divisor Z ′ of the blowup. We can then
blow up a nonsingular closed point on the exceptional divisor Z ′ to obtain a new
point of Can, and so forth. The resulting constellation of points obtained by all
such sequences of blowups, and varying over all possible choices of $, is an R-tree
TZ rooted at yZ , as pictured in Figure 10. The distance between the points yZ and
yZ′ is val($).

A semistable vertex set is a finite set of type-2 points whose complement is a
disjoint union of finitely many open annuli and infinitely many open balls. There is
a one-to-one correspondence between semistable vertex sets and semistable models
of C. More specifically, the normalized components of the central fiber of this
semistable model are precisely the curves Cy for y in the semistable vertex set,
and the preimages of the nodes under specialization are the annuli. The annulus
corresponding to a node where Cy meets Cy′ contains a unique open segment with
endpoints y and y′, and its length (with respect to the natural metric on ValC) is
the logarithmic modulus of the annulus. The union of these open segments together
with the semistable vertex set is a closed connected metric graph Γ contained in
Can, called the skeleton of the semistable model C. If C has genus at least 2, then
there is a unique minimal semistable vertex set in Can and a corresponding minimal
skeleton.

Fix a semistable model C of C and a corresponding skeleton Γ. Each connected
component of Can r Γ has a unique boundary point in Γ, and there is a canonical
retraction to the skeleton

τ : Can → Γ

taking a connected component of Can r Γ to its boundary point.

Example 6.2. Figure 10 depicts the Berkovich analytification of an elliptic curve
E/K with non-integral j-invariant jE . In this case, the skeleton Γ associated to a
minimal proper semistable model of R is isometric to a circle with circumference
− val(jE). There are an infinite number of infinitely-branched R-trees emanating
from the circle at each type-2 point of the skeleton. The retraction map takes a
point x ∈ Ean to the endpoint in Γ of the unique path from x to Γ. The points of
E(K) lie “out at infinity” in the picture: they are ends of the R-trees.

6.3. Tropicalization of divisors and functions on curves. Restricting the
retraction map τ to C(K) and extending linearly gives the tropicalization map on
divisors

Trop : Div(C)→ Div(Γ).

7See [BR10, Appendix B] for an introduction to the theory of R-trees. For our purposes, what
is most important about R-trees is that there is a unique path between any two points.
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Figure 10. The skeleton of an elliptic curve with non-integral j-invariant.

If K0 is a discretely valued subfield of K over which C is defined and has
semistable reduction, and if D is a divisor on C whose support consists of K0-
rational points, then the divisor mdeg(D) on G (identified with a divisor on Γ
via the natural inclusion) coincides with the tropicalization Trop(D) defined via
retraction to the skeleton.

Example 6.3. Returning to Example 3.1, in which the metric graph Γ is a closed
line segment of length 1, by considering the divisor cut out by ya = xbza−b for
positive integers a > b we see that a divisor on CK can tropicalize to any rational
point on Γ.

Given a rational function f ∈ K(C)∗, we write trop(f) for the real valued func-
tion on the skeleton Γ given by y 7→ valy(f). The function trop(f) is piecewise
linear with integer slopes, and thus we obtain a map

trop : K(C)∗ → PL(Γ).

Moreover, this map respects linear equivalence of divisors, in the sense that if
D ∼ D′ on C then trop(D) ∼ trop(D′) on Γ. In particular, the tropicalization map
on divisors descends to a natural map on Picard groups

Trop : Pic(C)→ Pic(Γ).

One can refine this observation as follows. Let x be a type-2 point in Can.
Given a nonzero rational function f on C, one can define its normalized reduction
f̄x with respect to x as follows. Choose c ∈ K∗ such that |f |x = |c|. Define
f̄x ∈ κ(Cx)∗ to be the image of c−1f in the residue field of K(C) with respect to
valx, which by definition is isomorphic to κ(Cx). Although fx is only well-defined up
to multiplication by an element of κ∗, its divisor div(fx) is completely well-defined.
We define the normalized reduction of the zero function to be zero.

Given an (r + 1)-dimensional K-vector space H ⊂ K(C), its reduction H̄x =

{f̄x | f ∈ H} is an (r+ 1)-dimensional vector space over κ. Given f̃ in the function

field of Cx and a closed point ν of Cx, we let sν(f̃) := ordν(f̃) be the order of

vanishing of f̃ at ν. If f̃ = f̄x for f ∈ K(C)∗, then sν(f̃) is equal to the slope of
trop(f) in the tangent direction at x corresponding to ν. This is a consequence of
the nonarchimedean Poincare-Lelong formula, due to Thuiller [Thu05]. Using this
observation, one deduces the following important result (cf. [BPR13]):

Theorem 6.4 (Slope Formula). For any nonzero rational function f ∈ K(C),

Trop(div(f)) = div(trop(f)).
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6.4. Skeletons of higher-dimensional Berkovich spaces. The construction of
the skeleton of a semistable model of a curve given in §6.2 can be generalized
in various ways to higher dimensions. For brevity, we mention just three such
generalizations. In what follows, X will denote a proper variety of dimension n
over K.

1. Semistable models. Suppose X is a strictly semistable model of X over R.
Then the geometric realization of the dual complex ∆(X ) of the special fiber embeds
naturally in the Berkovich analytic space Xan, and as in the case of curves there is
a strong deformation retraction of Xan onto ∆(X ). These facts are special cases of
results due to Berkovich; see [Nic11] for a lucid explanation of the constructions in
the special case of strictly semistable models, and [GRW14] for a generalization to
“extended skeleta”.

2. Toroidal embeddings. A toroidal embedding is, roughly speaking, something
which looks étale-locally like a toric variety together with its dense big open torus.
When K is trivially valued, Thuillier [Thu07] associates a skeleton Σ(X) of U
and an extended skeleton Σ(X) of X to any toroidal embedding U ⊂ X (see also
[ACP12]). As in the case of semistable models, the skeleton Σ(X) embeds naturally
into Xan and there is a strong deformation retract Xan → Σ(X).

3. Abelian varieties. If E/K is an elliptic curve with non-integral j-invariant,
the skeleton associated to a minimal proper semistable model of R can also be
constructed using Tate’s non-Archimedean uniformization theory. In this case,
the skeleton of Ean is the quotient of the skeleton of Gm (which is isomorphic
to R and consists of the unique path from 0 to ∞ in (P1)an) by the map x 7→
x − val(jE). Using Mumford’s higher-dimensional generalization of Tate’s theory
[Mum72], one can define a skeleton associated to any totally degenerate abelian
variety A; it is a real torus of dimension dim(A). This can be generalized further
using Raynaud’s uniformization theory to define a canonical notion of skeleton for
an arbitrary abelian variety A/K (see e.g. [Gub10]). If A is principally polarized,
there is an induced tropical principal polarization on the skeleton of A, see [BR13]
for a definition. It is shown in [BR13] that the skeleton of the Jacobian of a curve
C is isomorphic to the Jacobian of the skeleton as principally polarized real tori:

Theorem 6.5. [BR13] Let C be a curve over an algebraically closed field, com-
plete with respect to a nontrivial valuation, such that the minimal skeleton of the
Berkovich analytic space Can is isometric to Γ. Then there is a canonical isomor-
phism of principally polarized real tori Jac(Γ) ∼= Σ(Jac(C)an) making the following
diagram commute.

Can AJ //

��

Jac(C)an

''

Γ
AJ // Jac(Γ)

∼ // Σ(Jac(C)an).

Remark 6.6. Theorem 6.5 has the following interpretation in terms of tropical
moduli spaces, which we discuss in greater detail in §7. There is a map

trop : Mg →M trop
g

from the moduli space of genus g ≥ 2 curves to the moduli space of tropical curves
of genus g which takes a curve C to its minimal skeleton, considered as a vertex-
weighted metric graph. There is also a map

trop : Ag → Atrop
g
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from the moduli space of principally polarized abelian varieties of dimension g to
the moduli space of “principally polarized tropical abelian varieties” of dimension
g, taking an abelian variety to its skeleton in the sense of Berkovich. Finally, there
are Torelli maps Mg → Ag (resp. M trop

g → Atrop
g ) which take a curve (resp. metric

graph) to its Jacobian [BMV11]. Theorem 6.5 implies that the following square
commutes:

Mg
trop
//

��

M trop
g

��

Ag
trop

// Atrop
g

This is also proved, with slightly different hypotheses, in [Viv13, Theorem A].

7. Moduli Spaces

7.1. Moduli of tropical curves. The moduli space of tropical curves M trop
g has

been constructed by numerous authors [GKM09, Koz09, Cap11, ACP12]. In this
section, we give a brief description of this object, with an emphasis on applications
to classical algebraic geometry.

Given a finite vertex-weighted graph G = (G,ω) in the sense of §4.4, the set of
all vertex-weighted metric graphs (Γ, ω) with underlying finite graph G is naturally
identified with

M trop
G := R|E(G)|

>0 /Aut(G)

with the Euclidean topology. If G′ is obtained from G by contracting an edge, then
we may think of a metric graph in M trop

G′ as a limit of graphs in M trop
G in which

the length of the given edge approaches zero. Similarly, if G′ is obtained from v by
contracting a cycle to a vertex v and augmenting the weight of v by one, we may
think of a metric graph in M trop

G′ as a limit of graphs in M trop
G . In this way, we may

construct the moduli space of tropical curves

M trop
g :=

⊔
M trop

G ,

where the union is over all stable8 vertex-weighted graphs G of genus g, and the
topology is induced by gluing M trop

G′ to the boundary of M trop
G whenever G′ is a

contraction of G in one of the two senses above.

We note that the moduli space M trop
g is not compact, since edge lengths in a

metric graph must be finite and thus there is no limit if we let some edge length tend

to infinity. There exists a compactification M
trop

g , known as the moduli space of
extended tropical curves, which parameterizes vertex-weighted metric graphs with
possibly infinite edges; we refer to [ACP12] for details.

Let Mg be the (coarse) moduli space of genus g curves and Mg its Deligne-
Mumford compactification, considered as varieties over C endowed with the trivial
valuation. Points of Man

g can be identified with equivalence classes of points of
Mg(L), where L is a complete non-archimedean field extension of C (with possibly
non-trivial valuation). There is a natural map Trop : Man

g → M trop
g which on

the level of L-points takes a smooth proper genus g curve C/L to the minimal
skeleton of its Berkovich analytification Can. This map extends naturally to a map

Trop : M
an

g →M
trop

g .

8A vertex-weighted finite graph (G,ω) is called stable if every vertex of weight zero has valence
at least 3.
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Let Σ(Mg) (resp. Σ(Mg)) denote the skeleton, in the sense of Thuillier, of

Man
g (resp. M

an

g ) with respect to the natural toroidal structure coming from the

boundary strata of Mg rMg. According to the main result of [ACP12], there is a
very close connection between the moduli space of tropical curves M trop

g and the

Thuillier skeleton Σ(Mg):

Theorem 7.1. [ACP12] There is a canonical homeomorphism9

Φ : Σ(M
an

g )→M trop
g

which extends uniquely to a map

Φ : Σ(M
an

g )→M
trop

g

of compactifications in such a way that

M
an

g
P //

Trop

##

Σ(M
an

g )

Φ
��

M
trop

g

commutes, where P : M
an

g → Σ(M
an

g ) is the canonical deformation retraction.

It follows from Theorem 7.1 that the map Trop : M
an

g → M
trop

g is continuous,
proper, and surjective. From this, one easily deduces:

Corollary 7.2. Let K be a complete and algebraically closed non-Archimedean field
with value group R, and let Γ be a stable metric graph of genus at least 2. Then
there exists a curve C over K such that the minimal skeleton of the Berkovich
analytic space Can is isometric to Γ.

Remark 7.3. A more direct proof of Corollary 7.2, which in fact proves a stronger
statement replacing Γ with an arbitrary metrized complex of curves, and the field
K with any complete and algebraically closed non-Archimedean field whose value
group contains all edge lengths in some model for Γ, can be found in Theorem
3.24 of [ABBR14a]. The proof uses formal and rigid geometry. A variant of Corol-
lary 7.2 for discretely valued fields, proved using deformation theory, can be found
in Appendix B of [Bak08b].

Remark 7.4. Let R be a complete DVR with field of fractions K and infinite
residue field κ. The argument in Appendix B of [Bak08b] shows that for any finite
connected graph G, there exists a regular, proper, flat curve C over R whose generic
fiber is smooth and whose special fiber is a maximally degenerate semistable curve
with dual graph G. One should note the assumption here that κ has infinite residue
field. In the case where the residue field is finite – for example, when K = Qp –
the question of which graphs arise in this way remains an open problem. The
significance of this problem is its relation to the rational points of the moduli space
of curves. For example, the existence of Brill-Noether general curves defined over
Q for large g is a well-known open question; it seems most experts believe that for
large genus there are no such curves.

9This homeomorphism is in fact an isomorphism of “generalized cone complexes with integral
structure” in the sense of [ACP12].
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`1`2

`3w3 v3

v2 w1

w2 v1

Figure 11. The metric graph Γ from [LPP12].

7.2. Brill-Noether rank. The motivating problem of Brill-Noether theory is to
describe the variety W r

d (C) parameterizing divisors of a given degree and rank on a
curve C. A first step in such a description should be to compute numerical invariants
of W r

d (C), such as its dimension. Our goal is to use the combinatorics of the dual
graph Γ to describe W r

d (Γ). Combining this combinatorial description with the
Specialization Theorem, we can then hope to understand the Brill-Noether locus
of our original curve. One might be tempted to think that the tropical analogue of
dimW r

d (C) should be dimW r
d (Γ), but as in the case of linear series, the dimension is

not a well-behaved tropical invariant. We note one example of such poor behavior.

Example 7.5. In [LPP12], it is shown that the function that takes a metric graph
Γ to dimW r

d (Γ) is not upper semicontinuous on M trop
g . To see this, the authors

construct the following example. Let Γ be the loop of loops of genus 4 depicted in
Figure 11, with edges of length `1 < `2 < `3 as pictured. Suppose that `1 + `2 > `3.
Then dimW 1

3 (Γ) = 1. If, however, we consider the limiting metric graph Γ0 as
`1, `2 and `3 approach zero, then on this graph the only divisor of degree 3 and
rank 1 is the sum of the three vertices, hence dimW 1

3 (Γ0) = 0.

The solution to this problem has a very similar flavor to the definition of rank
recorded in Definition 4.2. Specifically, given a curve C, consider the incidence
correspondence

Φ = {(p1, . . . , pd, D) ∈ Cd ×W r
d (C) | p1 + · · ·+ pd ∈ |D|}.

The forgetful map to W r
d (C) has fibers of dimension r, so dim Φ = r+ dimW r

d (C),
and hence the image of Φ in Cd has the same dimension. This suggests the following
surrogate for the dimension of W r

d (C).

Definition 7.6. Let Γ be a metric graph, and suppose that W r
d (Γ) is nonempty.

The Brill-Noether rank wrd(Γ) is the largest integer k such that, for every effective
divisor E of degree r + k, there exists a divisor D ∈W r

d (Γ) such that |D −E| 6= ∅.

Example 7.7. Note that, in the previous example, although dimW 1
3 (Γ) = 1, the

Brill-Noether rank w1
3(Γ) = 0. To see this, it suffices to find a pair of points such

that no divisor of degree 3 and rank 1 passes through both points simultaneously.
Indeed, it is shown in [LPP12, Theorem 1.9] that no divisor of rank 1 and degree 3
contains v3 + w3.
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The Brill-Noether rank is much better behaved than the dimension of the Brill-
Noether locus; for example:

Theorem 7.8. [LPP12, Len12] The Brill-Noether rank is upper semicontinuous
on the moduli space of tropical curves.

The Brill-Noether rank also satisfies the following analogue of the Specialization
Theorem:

Theorem 7.9. [LPP12] If C is a curve over an algebraically closed field K with
nontrivial valuation, and the skeleton of the Berkovich analytic space Can is iso-
metric to Γ, then

dimW r
d (C) ≤ wrd(Γ).

We note the following generalization of Theorem 4.6.

Corollary 7.10. Let Γ be a metric graph of genus g. Then wrd(Γ) ≥ ρ := g − (r+
1)(g − d+ r).

Proof. The general theory of determinantal varieties shows that, ifW r
d (C) is nonempty,

then its dimension is at least ρ. The result then follows from [Kem71, KL74] and
Theorem 7.9. �

Remark 7.11. It is unknown whether W r
d (Γ) must have local dimension at least ρ.

Note, however, that this must hold in a neighborhood of a divisor D ∈ TropW r
d (C).

Hence, if W r
d (Γ) has smaller than the expected local dimension in a neighborhood

of some divisor D, then D does not lift to a divisor of rank r on a curve C having
Γ as its tropicalization.

8. Metrized Complexes of Curves and Limit Linear Series

In this section we describe the work of Amini and Baker [AB12] on the Riemann–
Roch and Specialization Theorems for divisors on metrized complexes of curves,
along with applications to the theory of limit linear series.

8.1. Metrized complexes of curves. Metrized complexes of curves can be thought
of, loosely, as objects which interpolate between classical and tropical algebraic ge-
ometry. More precisely, a metrized complex of algebraic curves over an algebraically
closed field κ is a finite metric graph Γ together with a fixed model G and a collec-
tion of marked complete nonsingular algebraic curves Cv over κ, one for each vertex
v of G; the set Av of marked points on Cv is in bijection with the edges of G inci-
dent to v. A metrized complex over C can be visualized as a collection of compact
Riemann surfaces connected together via real line segments, as in Figure 12.
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Figure 12. An Example of a Metrized Complex
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The geometric realization |C| of a metrized complex of curves C is defined to be
the union of the edges of G and the collection of curves Cv, with each endpoint
v of an edge e identified with the corresponding marked point xev (as suggested
by Figure 12). The genus of a metrized complex of curves C, denoted g(C), is by
definition g(C) = g(Γ) +

∑
v∈V gv, where gv is the genus of Cv and g(Γ) is the first

Betti number of Γ.

A divisor on a metrized complex of curves C is an element D of the free abelian
group on |C|. Thus a divisor on C can be written uniquely as D =

∑
x∈|C| ax x

where ax ∈ Z, all but finitely many of the ax are zero, and the sum is over all
points of Γ\V as well as Cv(κ) for v ∈ V . The degree of D is defined to be

∑
ax.

A nonzero rational function f on a metrized complex of curves C is the data of
a rational function fΓ ∈ PL(Γ) and nonzero rational functions fv on Cv for each
v ∈ V . We call fΓ the Γ-part of f and fv the Cv-part of f. The divisor of a nonzero
rational function f on C is defined to be

div(f) :=
∑
x∈|C|

ordx(f)x,

where ordx(f) is defined as follows:

• If x ∈ Γ\V , then ordx(f) = ordx(fΓ), where ordx(fΓ) is the sum of the
slopes of fΓ in all tangent directions emanating from x.

• If x ∈ Cv(κ)\Av, then ordx(f) = ordx(fv).
• If x = xev ∈ Av, then ordx(f) = ordx(fv) + slpe(fΓ), where slpe(fΓ) is the

outgoing slope of fΓ at v in the direction of e.

Divisors of the form div(f) are called principal, and the principal divisors form
a subgroup of Div0(C), the group of divisors of degree zero on C. Two divisors
in Div(C) are called linearly equivalent if they differ by a principal divisor. Linear
equivalence of divisors on C can be understood rather intuitively in terms of “chip-
firing moves” on C. We refer the reader to §1.2 of [AB12] for details.

A divisor E =
∑
x∈|C| ax(x) on C is called effective if ax ≥ 0 for all x. The rank

rC of a divisor D ∈ Div(C) is defined to be the largest integer k such that D − E is
linearly equivalent to an effective divisor for all effective divisors E of degree k on
C (so in particular rC(D) ≥ 0 if and only if D is linearly equivalent to an effective
divisor, and otherwise rC(D) = −1).

The theory of divisors, linear equivalence, and ranks on metrized complexes of
curves generalizes both the classical theory for algebraic curves and the correspond-
ing theory for metric graphs. The former corresponds to the case where G consists
of a single vertex v and no edges and C = Cv is an arbitrary smooth curve. The
latter corresponds to the case where the curves Cv have genus zero for all v ∈ V .
Since any two points on a curve of genus zero are linearly equivalent, it is easy to
see that the divisor theories and rank functions on C and Γ are essentially the same.

The canonical divisor on C is

K =
∑
v∈V

(Kv +
∑
w∈Av

w),

where Kv is a canonical divisor on Cv.

The following result generalizes both the classical Riemann-Roch theorem for
algebraic curves and the Riemann-Roch theorem for metric graphs:
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Riemann-Roch for Metrized Complexes. Let C be a metrized complex of
algebraic curves over κ. For any divisor D ∈ Div(C), we have

rC(D)− rC(K −D) = deg(D)− g(C) + 1.

As with the tropical Riemann-Roch theorem, the proof of this theorem makes
use of a suitable notion of reduced divisors for metrized complexes of curves. We
note that the proof of the Riemann-Roch theorem for metrized complexes uses the
Riemann-Roch theorem for algebraic curves and does not furnish a new proof of
that result.

8.2. Specialization of divisors from curves to metrized complexes. Let K
be a complete and algebraically closed non-Archimedean field with valuation ring
R and residue field κ, and let C be a smooth proper curve over K. As in §6, there
is a metrized complex C canonically associated to any strongly semistable model
C of C over R. The specialization map Trop defined in Sections 2 and 3 can be
enhanced in a canonical way to a map from divisors on C to divisors on C. The
enhanced specialization map, which by abuse of terminology we continue to denote
by Trop, is obtained by linearly extending a map τ : C(K) → |C|. The map τ is
defined as follows:

• For P ∈ C(K) reducing to a smooth point red(P ) of the special fiber C0 of
C, τ(P ) is just the point red(P ).
• For P ∈ C(K) reducing to a singular point, τ(P ) is the point Trop(P ) in

the relative interior of the corresponding edge of the skeleton Γ of C.

The motivation for the definitions of Trop : C(K)→ |C| and div(f) come in part
from the following extension of the Slope Formula (Theorem 6.4):

Proposition 8.1. Let f be a nonzero rational function on C and let f be the
corresponding nonzero rational function on C, where fΓ is the restriction to Γ of the
piecewise linear function log |f | on Can and fv ∈ κ(Cv) for v ∈ V is the normalized
reduction of f to Cv (cf. §6.1). Then

Trop(div(f)) = div(f).

In particular, we have Trop(Prin(C)) ⊆ Prin(C).

The Specialization Theorem from §4.2 generalizes to metrized complexes as fol-
lows:

Specialization Theorem for Metrized Complexes. For all D ∈ Div(C), we
have

rC(D) ≤ rC(trop(D)).

Since rC(trop(D)) ≤ rΓ(trop(D)), the specialization theorem for metrized com-
plexes is a strengthening of the analogous specialization result for metrized graphs.
In conjunction with a simple combinatorial argument, this theorem also refines the
Specialization Theorem for vertex-weighted graphs

A simple consequence of the Riemann-Roch and Specialization Theorems for
metrized complexes is that for any canonical divisor KC on C, the divisor trop(KC)
belongs to the canonical class on C. Indeed, the Specialization Theorem shows that
rC(trop(KC)) ≥ g − 1, while Riemann-Roch shows that a divisor of degree 2g − 2
and rank at least g − 1 must be equivalent to K.

There is also a version of specialization in which one has equality rather than just
an inequality. One can naturally associate to a rank r divisor D on C a collection
H = {Hv}v∈V of (r+1)-dimensional subspaces of κ(Cv), where Hv is the normalized
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reduction of L(D) to Cv (cf. §6). If F = {Fv}v∈V , where Fv is any κ-subspace of
the function field κ(Cv), then for D ∈ Div(C) we define the F-restricted rank of D,
denoted rC,F (D), to be the largest integer k such that for any effective divisor E of
degree k on C, there is a rational function f on C whose Cv-parts fv belong to Fv
for all v ∈ V , and such that D − E + div(f) ≥ 0.

Theorem 8.2 (Specialization Theorem for Restricted Ranks). With notation as
above, the H-restricted rank of the specialization of D is equal to the rank of D,
i.e., rC,H(trop(D)) = r.

8.3. Connections with the theory of limit linear series. The theory of linear
series on metrized complexes of curves has close connections with the Eisenbud-
Harris theory of limit linear series for strongly semistable curves of compact type,
and allows one to generalize the basic definitions in the Eisenbud-Harris theory to
more general semistable curves. The Eisenbud–Harris theory, which they used to
settle a number of longstanding open problems in the theory of algebraic curves,
only applies to a rather restricted class of reducible curves, namely those of compact
type (i.e., nodal curves whose dual graph is a tree). It has been an open problem
for some time to generalize their theory to more general semistable curves.10

Recall that the vanishing sequence of a linear series L = (L,W ) at p ∈ C, where
W ⊂ H0(C,L), is the ordered sequence

aL0 (p) < · · · < aLr (p)

of integers k with the property that there exists some s ∈ W vanishing to order
exactly k at p. For strongly semistable curves of compact type, Eisenbud and Harris
define a notion of crude limit grd L on C0, which is the data of a (not necessarily
complete) degree d and rank r linear series Lv on Cv for each vertex v ∈ V with
the following property: if two components Cu and Cv of C0 meet at a node p, then
for any 0 ≤ i ≤ r,

aLvi (p) + aLur−i(p) ≥ d .

We can canonically associate to a proper strongly semistable curve C0 a metrized
complex C of κ-curves, called the regularization of C0, by assigning a length of 1 to
each edge of G. This is the metrized complex associated to any regular smoothing
C of C0 over any discrete valuation ring R with residue field κ.

Theorem 8.3. Let C be the metrized complex of curves associated to a strongly
semistable curve C0/κ of compact type. Then there is a bijective correspondence
between the following:

(1) Crude limit grd’s on C0 in the sense of Eisenbud and Harris.
(2) Equivalence classes of pairs (H,D), where H = {Hv}, Hv is an (r + 1)-

dimensional subspace of κ(Cv) for each v ∈ V , and D is a divisor of degree d
supported on the vertices of C with rC,H(D) = r. Here we say that (H,D) ∼
(H′,D′) if there is a rational function f on C such that D′ = D+div(f) and
Hv = H ′v · fv for all v ∈ V , where fv denotes the Cv-part of f.

Theorem 8.3, combined with the Riemann-Roch theorem for metrized complexes
of curves, provides a new proof of the fact, originally established in [EH86], that
limit linear series satisfy analogues of the classical theorems of Riemann and Clif-
ford. The point is that rC,H(D) ≤ rC(D) for all D ∈ Div(C), and therefore up-
per bounds on rC(D) which follow from Riemann-Roch imply corresponding upper
bounds on the restricted rank rC,H(D).

10Brian Osserman [Oss14] has recently proposed a different framework for doing this.
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Motivated by Theorem 8.3, Amini and Baker propose the following definition.

Definition 8.4. Let C0 be a strongly semistable (but not necessarily compact type)
curve over κ with regularization C. A limit grd on C0 is an equivalence class of pairs
({Hv},D) as above, where Hv is an (r+ 1)-dimensional subspace of κ(Cv) for each
v ∈ V , and D is a degree d divisor on C with rC,H(D) = r.

As partial additional justification for Definition 8.4, Amini and Baker prove,
using specialization, that a grd on the smooth general fiber C of a semistable family
C gives rise in a natural way to a crude limit grd on the central fiber.

Part 3. Applications

In this part, we discuss several recent applications of tropical Brill-Noether the-
ory to problems in algebraic and arithmetic geometry. These sections are largely
independent of each other, so the reader should be able to peruse them according
to his or her interest.

9. Applications of Tropical Linear Series to Classical
Brill-Noether Theory

Recent years have witnessed several applications of tropical Brill-Noether theory
to problems in classical algebraic geometry. In this section, we survey the major
recent developments in the field.

9.1. The Brill-Noether Theorem. The Brill-Noether Theorem predicts the di-
mension of the space parameterizing linear series of given degree and rank on a
general curve.

Brill-Noether Theorem. [GH80] Let C be a general curve of genus g over C.
Then W r

d (C) has pure dimension ρ(g, r, d) = g − (r + 1)(g − d + r), if this is
nonnegative, and is empty otherwise.

The original proof of the Brill-Noether Theorem, due to Griffiths and Harris,
involves a subtle degeneration argument [GH80]. The later development of limit
linear series by Eisenbud and Harris led to a simpler proof of this theorem [EH83,
EH86]. The literature contains several other proofs, some of which work in any
characteristic. One that is often referenced is due to Lazarsfeld, because rather
than using degenerations, Lazarsfeld’s argument involves vector bundles on K3
surfaces [Laz86].

The first significant application of tropical Brill-Noether theory was the new
proof of the Brill-Noether Theorem by Cools, Draisma, Payne and Robeva [CDPR12],
which successfully realized the program laid out in [Bak08b]. In [CDPR12], the au-
thors consider the family of graphs pictured in Figure 13, colloquially known as the
chain of loops.11 The edge lengths are further assumed to be generic, which in this
case means that, if `i,mi are the lengths of the bottom and top edges of the ith
loop, then `i/mi is not equal to the ratio of two positive integers whose sum is less
than or equal to 2g − 2.

11In fact, they consider the graph in which the lengths of the bridge edges between the loops
are all zero. There is, however, a natural rank-preserving isomorphism between the Jacobian

of a metric graph with a bridge and the Jacobian of the graph in which that bridge has been

contracted, so their argument works equally well in this case. We consider the graph with bridges
because of its use in [JP14] and [JP].
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v1

w1

v2 wg−1

vg wg

`i

mi

Figure 13. The graph Γ.

v1

γ1

w1

br1

· · ·

γi

bri

· · ·

γg

wg

Figure 14. A decomposition of Γ.

Using Theorem 4.6 as the only input from algebraic geometry, the authors of
[CDPR12] employ an intricate combinatorial argument to prove the following:

Theorem 9.1. [CDPR12] Let C be a smooth projective curve of genus g over a
discretely valued field with a regular, strongly semistable model whose special fiber
is a generic chain of loops Γ. Then dimW r

d (C) = ρ(g, r, d) if this number is non-
negative, and W r

d (C) = ∅ otherwise.

We note that such a curve C exists by Corollary 7.2. The Brill-Noether Theorem
(over an arbitrary algebraically closed field) then follows from Theorem 9.1 using
the theory of Brill-Noether rank discussed in §7.2.

In fact, [CDPR12] proves more. Theorem 4.6 of [CDPR12] completely describes
W r
d (Γ), explicitly classifying all divisors of given degree and rank on a generic chain

of loops. Indeed, it is shown that W r
d (Γ) is a union of ρ-dimensional tori. The set

of tori is in bijection with so-called “lingering lattice paths”, which in turn are in
bijection with standard Young tableaux on a rectangle with r + 1 columns and
g − d + r rows containing the numbers 1, . . . , g. From this, one can compute the
number of tori to be (

g

ρ

)
(g − ρ)!

r∏
i=0

i!

(g − d+ r + i)!
.

We briefly discuss the argument here. Given an effective divisor D, we may
assume that D is v1-reduced. The divisor D then has some number d1 of chips at
v1, and by Dhar’s burning algorithm D has at most 1 chip on each of the half-open
loops γk pictured in Figure 14, and no chips on the half-open bridges brk.

The associated lingering lattice path is a sequence of vectors pi ∈ Zr, starting at
p1 = (d1, d1 − 1, . . . , d1 − r + 1), with the ith step given by

pi+1 − pi =


(−1,−1, . . . ,−1) if D has no chip on γi
ej if D has a chip on γi, the distance from vi

to this chip is precisely (pi(j) + 1)mi+1,
and both pi and pi + ej are in W

0 otherwise
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Here, the distance from vi is in the counterclockwise direction. Since the chip lies on
a circle of circumference mi + `i, this distance should be understood to be modulo
(mi + `i). The symbols e0, . . . er−1 represent the standard basis vectors in Zr and
W is the open Weyl chamber

W = {y ∈ Zr|y0 > y1 > · · · > yr−1 > 0}.

The steps where pi+1 = pi are known as lingering steps. The basic idea of the
lingering lattice path is as follows. By Theorem 5.7, the set {v1, v2, . . . , vg, wg} is
rank-determining. Hence, if D fails to have rank r, there is an effective divisor E
of degree r, supported on these vertices, such that |D − E| = ∅. Starting with
the v1-reduced divisor D, we move chips to the right and record the vi-degree of
the equivalent vi-reduced divisor. The number pi(j) is then the minimum, over
all effective divisors E of degree j supported at v1, . . . , vi, of the vi-degree of the
vi-reduced divisor equivalent to D−E. From this it follows that, when D has rank
at least r, we must have pi(j) ≥ r − j, so the corresponding lingering lattice path
must lie in the open Weyl chamber W.

The corresponding tableau is constructed by placing the moves in the direction
ei in the ith column of the rectangle, and the moves in the direction (−1, . . . ,−1) in
the last column. If the kth step is lingering, then the integer k does not appear in the
tableau. Given this description, we see that each tableau determines the existence
and position of the chip on the half-open loop γk if and only if the integer k appears
in the tableau. Otherwise, the chip on the kth loop is allowed to move freely. The
number of chips that are allowed to move freely is therefore ρ = g−(r+1)(g−d+r).
Indeed, we see that not only is the Brill-Noether rank wrd(Γ) equal to ρ, but in fact
dimW r

d (Γ) = ρ as well. Theorem 9.1 then follows from the specialization result for
Brill-Noether rank, Theorem 7.9.

9.2. The Gieseker-Petri Theorem. Assume that ρ(g, r, d) ≥ 0. The variety
W r
d (C) is singular along W r+1

d (C). Blowing up along this subvariety yields the
variety Grd(C) parameterizing (not necessarily complete) linear series of degree d
and rank r on C. A natural generalization of the Brill-Noether Theorem is the
following:

Gieseker-Petri Theorem. [Gie82] Let C be a general curve of genus g. If
ρ(g, r, d) ≥ 0, then Grd(C) is smooth of dimension ρ(g, r, d).

It is a standard result, following [ACGH85, §IV.4], that the Zariski cotangent
space to Grd(C) at a point corresponding to a complete linear series L(D) is naturally
isomorphic to the cokernel of the adjoint multiplication map

µD : L(D)⊗ L(KC −D)→ L(KC).

Thus the cotangent space has dimension ρ(g, r, d) + dim kerµD, and in particular,
Grd(C) is smooth of dimension ρ(g, r, d) at such a point if and only if the multipli-
cation map µD is injective. More generally, if P ∈ Grd(C) corresponds to a possibly
incomplete linear series W ⊂ L(D), then Grd(C) is smooth of dimension ρ(g, r, d)
at P if and only if the multiplication map W ⊗ L(KC −D)→ L(KC) is injective.
One deduces that the Gieseker-Petri Theorem is equivalent to the assertion that if
C is a general curve of genus g, then µD is injective for all divisors D on C.

A recent application of tropical Brill-Noether theory is the following result [JP14],
which yields a new proof of the Gieseker-Petri Theorem:
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Theorem 9.2. [JP14] Let C be a smooth projective curve of genus g over a dis-
cretely valued field with a regular, strongly semistable model whose special fiber is a
generic chain of loops Γ. Then the multiplication map

µD : L(D)⊗ L(KC −D)→ L(KC)

is injective for all divisors D on C.

The argument has much in common with the tropical proof of the Brill-Noether
Theorem, using the same metric graph with the same genericity conditions on edge
lengths. The new ingredient is the idea of tropical independence, as defined in §5.3.
Given a divisor D ∈W r

d (C), the goal is to find functions

f0, . . . , fr ∈ trop(L(D))

g0, . . . , gg−d+r−1 ∈ trop(L(KC −D))

such that {fi + gj}i,j is tropically independent.

There is a dense open subset of W r
d (Γ) consisting of divisors D with the following

property: given an integer 0 ≤ i ≤ r, there exists a unique divisor Di ∼ D such
that

Di − iwg − (r − i)v1 ≥ 0.

These are the divisors referred to as vertex-avoiding in [CJP14].

We first describe the proof of Theorem 9.2 in the case that D is vertex-avoiding.
If D is the specialization of a divisor D ∈ W r

d (C), and p1, pg ∈ C are points
specializing to v1, wg, respectively, then there exists a divisor Di ∼ D such that

Di − ipg − (r − i)p1 ≥ 0,

and, by the uniqueness of Di, Di must specialize to Di. It follows that there is a
function fi ∈ trop(L(D)) such that div(fi) = Di −D.

For this open subset of divisors, the argument then proceeds as follows. By the
classification in [CDPR12], the divisor Di fails to have a chip on the kth loop if
and only if the integer k appears in the ith column of the corresponding tableau.
The adjoint divisor E = KΓ −D corresponds to the transpose tableau [AMSW13,
Theorem 39], so the divisor Di +Ej fails to have a chip on the kth loop if and only
if k appears in the (i, j) position of the tableau. Since for each k at most one of
these divisors fails to have a chip on the kth loop, we see that if

θ = min{fi + gj + bi,j}
occurs at least twice at every point of Γ, then the divisor

∆ = div(θ) +KΓ

must have a chip on the kth loop for all k.

To see that this is impossible, let pk be a point of ∆ in γk, and let

D′ = p1 + · · ·+ pg.

Then by construction KΓ−D′ is equivalent to an effective divisor, so by the tropical
Riemann-Roch Theorem we see that r(D′) ≥ 1. But Proposition 5.16 asserts that
r(D′) = 0, a contradiction.

It is interesting to note that this obstruction is, at heart, combinatorial. Un-
like the earlier proofs via limit linear series, which arrive at a contradiction by
constructing a canonical divisor of impossible degree (larger than 2g − 2), this ar-
gument arrives at a contradiction by constructing a canonical divisor of impossible
shape.
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The major obstacle to extending this argument to the case where D is not vertex-
avoiding is that the containment trop(L(D)) ⊆ R(Trop(D)) is often strict. Given
an arbitrary divisor D ∈ W r

d (C) and function f ∈ R(Trop(D)), it is difficult to
determine whether f is the specialization of a function in L(D). To avoid this issue,
the authors make use of a patching construction, gluing together tropicalizations
of different rational functions in a fixed algebraic linear series on different parts
of the graph, to arrive at a piecewise linear function in R(KΓ) that may not be
in trop(L(KC)). Once this piecewise linear function is constructed, the argument
proceeds very similarly to the vertex-avoiding case.

9.3. The Maximal Rank Conjecture. While these results are undoubtedly im-
portant, they are of course not new. One of the most well-known open problems in
Brill-Noether theory is the Maximal Rank Conjecture.

Maximal Rank Conjecture. Fix nonnegative integers g, r, d, let C be a general
curve of genus g, and let V ⊂ L(D) be a general linear series of rank r and degree
d on C. Then the multiplication maps

µm : SymmV → L(mD)

have maximal rank for all m. That is, each µm is either injective or surjective.

While the Maximal Rank Conjecture remains open in general, several important
cases are known [BE85, Voi92, Tib03, Far09]. For example, it is shown in [BE85]
that the Maximal Rank Conjecture holds in the non-special range d ≥ g+ r. When
d < g + r, the general linear series of degree d and rank r on a general curve is
complete, and for this reason, most of the work in the subject focuses on the case
where V = L(D). It is interesting that, while each of these arguments proceed by
studying degenerations to singular curves, in almost all of the cases the degenerate
curve is not of compact type, and as such they do not make use of limit linear
series.

In [JP], tropical Brill-Noether theory is used to prove the m = 2 case of the
Maximal Rank Conjecture.

Theorem 9.3. [JP] Let C be a smooth projective curve of genus g over a discretely
valued field with a regular, strongly semistable model whose special fiber is a generic
chain of loops Γ. For a given r and d, let D be a general divisor of rank r and
degree d on C. Then the multiplication map

µ2 : Sym2L(D)→ L(2D)

has maximal rank.

The genericity conditions placed on the edge lengths of Γ in Theorem 9.3 are
stricter than those appearing in the tropical proofs of the Brill-Noether and Gieseker-
Petri Theorems. First, the bridges between the loops are assumed to be much longer
than the loops themselves, and second, one must assume that certain integer linear
combinations of the edge lengths do not vanish.

A simplifying aspect of the Maximal Rank Conjecture is that it concerns a gen-
eral, rather than arbitrary, divisor. It therefore suffices to prove that the maxi-
mal rank condition holds for a single divisor of the given degree and rank on C.
The main result of [CJP14] is that every divisor on the generic chain of loops is
the specialization of a divisor of the same rank on C. We are therefore free to
choose whatever divisor we wish to work with, and in particular we may choose
one of the vertex-avoiding divisors described in the previous section. Recall that,
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if D ∈ W r
d (Γ) is vertex-avoiding, then we have an explicit set of piecewise linear

functions fi ∈ R(D) that are tropicalizations of a basis for the linear series on the
curve C. The goal, in the case where the multiplication map is supposed to be
injective, is to show that the set {fi + fj}i≤j is tropically independent. In the
surjective case, we must choose a subset of the appropriate size, and then show
that this subset is tropically independent.

The basic idea of the argument is as follows. Assume that

θ = min{fi + fj + bi,j}
occurs at least twice at every point of Γ, and consider the divisor

∆ = div(θ) + 2D.

To arrive at a contradiction, one studies the degree distribution of the divisor ∆
across the loops of Γ. More precisely, one defines

δk := deg(∆|γk).

The first step is to show that δk ≥ 2 for all k. One then identifies intervals [a, b]
for which this inequality must be strict for at least one k ∈ [a, b]. As one proceeds
from left to right across the graph, one encounters such intervals sufficiently many
times to obtain deg ∆ > 2 degD, a contradiction.

10. Lifting Problems for Divisors on Metric Graphs

In this section we discuss the lifting problem in tropical Brill-Noether theory:
given a divisor of rank r on a metric graph Γ, when is it the tropicalization of a
rank r divisor on a smooth curve C? There are essentially two formulations of this
problem, one in which the curve C is fixed, and one in which it is not.

Throughout this section, we let K be a complete and algebraically closed non-
trivially valued non-Archimedean field.

Question 10.1. Given a metric graph Γ and a divisor D on Γ, under what condi-
tions do there exist a curve C/K (together with a semistable model R) and a divisor
of the same rank as D tropicalizing to Γ and D, respectively?

Question 10.2. Given a curve C/K (together with a semistable model R) tropi-
calizing to a metric graph Γ, and given a divisor D on Γ, under what conditions
does there exist a divisor on C of the same rank as D tropicalizing to D?

These are very difficult questions. Even for the earlier theory of limit linear
series on curves of compact type, the analogous questions remain open. A partial
answer in that setting is given by the Regeneration Theorem of Eisenbud and Harris
[EH86], which says that if the space of limit linear series has local dimension equal
to the Brill-Noether number ρ, then the given limit linear series lifts in any one-
parameter smoothing. At the time of writing, there is no corresponding theorem
in the tropical setting.12

10.1. Specialization of hyperelliptic curves. One of the first results concerning
lifting of divisors is the classification of vertex-weighted metric graphs that are the
specialization of a hyperelliptic curve. Recall from §4.4 that given a curve C/K and
a semistable model C/R for C, there is a natural way to associate to C a vertex-
weighted metric graph (Γ, ω). We call such a pair minimal if there is no vertex v
with val(v) = 1 and ω(v) = 0.

12Though Amini has apparently made substantial progress in this direction.
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Figure 15. A hyperelliptic metric graph of genus 3 that is not
the skeleton of any hyperelliptic curve of genus 3.

Theorem 10.3. [Cap12] [ABBR14b] Let (Γ, ω) be a minimal vertex-weighted met-
ric graph. There is a smooth projective hyperelliptic curve over a discretely valued
field with a regular, strongly semistable model whose special fiber has dual graph Γ
if and only if the following conditions hold:

(HYP1) there exists an involution s on Γ such that the quotient Γ/s is a tree and
s(v) = v for all v ∈ Γ with ω(v) > 0, and

(HYP2) for every point v ∈ Γ, the number of bridge edges adjacent to v is at most
2ω(v) + 2.

Kawaguchi and Yamaki show moreover that, when Γ satisfies these conditions,
there is a smoothing C for which every divisor on Γ lifts to a divisor of the same
rank on C [KY14b].

We outline the necessity of the conditions above in the special case where ω = 0,
which is equivalent to requiring that g(C) = g(Γ). Note that if C is a hyperelliptic
curve, then by the Specialization Theorem any divisor of degree 2 and rank 1 on
C specializes to a divisor D of rank at least 1 on Γ, and by Tropical Clifford’s
Theorem D must have rank exactly 1. Now, if P ∈ Γ is not contained in a bridge,
then |P | = {P}. On the other hand, if P ∈ Γ is contained in a bridge, a simple
analysis reveals that D ∼ 2P . In this way we obtain an involution s on Γ mapping
each point P to the P -reduced divisor equivalent to D − P .

To see why (HYP2) holds, note that for each type-2 point v ∈ Γ, the linear series
of degree 2 and rank 1 on C specializes to a linear series of degree 2 and rank 1
on the corresponding curve Cv. Each of the bridges adjacent to v correspond to
ramification points of this linear series, but such a linear series has only 2g(Cv)+2 =
2 ramification points.

To see that the conditions (HYP1) and (HYP2) are sufficient requires signifi-
cantly more work.

Example 10.4. Consider the metric graph Γ pictured in Figure 15, consisting of a
tree with a loop attached to each leaf, with all edge lengths being arbitrary. Then
Γ is hyperelliptic, because any divisor of degree 2 supported on the tree has rank
1. On the other hand, this graph is not the dual graph of the limit of any family of
genus 3 hyperelliptic curves, because the vertex of valence 3 in the tree is adjacent
to more than 2 bridges.

For metric graphs of higher gonality, the lifting problem is significantly harder.
In [LM14], Luo and Manjunath describe an algorithm for smoothability of rank one
generalized limit linear series on metrized complexes.

10.2. Lifting divisors on the chain of loops. For some specific families of
graphs, such as the chain of loops discussed §9, one can show that the lifting
problem is unobstructed.
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Theorem 10.5. [CJP14] Let C/K be a smooth projective curve of genus g. If the
dual graph of the central fiber of some regular model of C is isometric to a generic
chain of loops Γ of genus g, then every divisor class on Γ that is rational over the
value group of K lifts to a divisor class of the same rank on C.

The general strategy for proving Theorem 10.5 is to study the Brill-Noether loci
as subschemes

W r
d (C) ⊂ Jac(C).

Since C is maximally degenerate, the universal cover of Jac(C)an gives a uniformiza-
tion

T an → Jac(C)an

by an algebraic torus T of dimension g. The tropicalization of this torus is the
universal cover of the skeleton of Jac(C), which, as discussed in §6 is canonically
identified with the tropical Jacobian of Γ [BR13].

A key tool in the proof of Theorem 10.5 is Rabinoff’s lifting theorem [Rab12],
which can be applied to the analytic preimages in T of algebraic subschemes of
Jac(C). This lifting theorem says that isolated points in complete intersections of
tropicalizations of analytic hypersurfaces lift to points in the analytic intersection
with appropriate multiplicities. This theorem can be applied to translates of the
preimage of the theta divisor ΘΓ = W 0

g−1(Γ), as follows.

When Γ is the generic chain of loops, one can use the explicit description of
W r
d (Γ) from [CDPR12] to produce explicit translates of ΘC whose tropicalizations

intersect transversally and locally cut out W r
d (Γ). By intersecting with ρ additional

translates of ΘC , one obtains an isolated point in a tropical complete intersection,
to which we may apply Rabinoff’s lifting theorem. This complete intersection is
typically larger than W r

d (Γ), but the argument shows that the tropicalization map
from a 0-dimensional slice of W r

d (C) to the corresponding slice of W r
d (Γ) is injective.

Using again the explicit description of W r
d (Γ), one then shows that the two finite

sets have the same cardinality, and hence the map is bijective.

Remark 10.6. As mentioned in the section on the Maximal Rank Conjecture,
Theorem 10.5 is one of the key ingredients in the proof of Theorem 9.3 (the Maximal
Rank Conjecture for quadrics). In particular, in order to show that the maximal
rank condition holds for a generic line bundle of a given degree and rank, it suffices
to show that it holds for a single line bundle. Since every divisor of a given rank on
the chain of loops lifts to a line bundle on C of the same rank, one is free to work
with any divisor of this rank on the chain of loops.

10.3. Examples of divisors that do not lift. Among the results on lifting di-
visors, there is a plethora of examples of divisors that do not lift. For example, in
[Cop14b], Coppens defines a base-point free divisor on a metric graph Γ to be a
divisor D such that r(D− p) < r(D) for all p ∈ Γ. He then shows that the Clifford
and Riemann-Roch bounds are the only obstructions to the existence of base-point
free divisors on metric graphs of arbitrary genus. This is in contrast to the case of
algebraic curves, where for example a curve of genus greater than 6 cannot have a
base-point free divisor of degree 5 and rank 2.

Another example of divisors that do not lift comes from the theory of matroids.

Theorem 10.7. [Car15] Let M be any rank 3 matroid. Then there exists a graph
GM and a rank 2 divisor DM on GM such that, for any infinite field k, there are
a curve C over k((t)) (together with a semistable model C of C over k[[t]]) and a
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rank 2 divisor on C tropicalizing to GM and DM , respectively, if and only if M is
realizable over k.

Combining this with the scheme-theoretic analogue of Mnëv universality, due to
Lafforgue [Laf03], one obtains the following.

Corollary 10.8. [Car15] Let X be a scheme of finite type over SpecZ. Then there
exists a graph G and a rank 2 divisor D on G such that, for any infinite field k,
G and D are the tropicalizations of a curve C/k((t)) and a rank 2 divisor on C if
and only if X has a k-point.

In other words, the obstructions to lifting over a valued field of the form k((t))
are essentially as general as possible.

Cartwright’s construction is as follows. Recall that a rank 3 simple matroid on
a finite set E consists of a collection of subsets of E, called flats, such that every
pair of elements is contained in exactly one flat. (Here we are abusing language,
using the word flat to refer to refer to the maximal, or rank 2, flats.) The bipartite
graph GM is the Levi graph of the matroid M , where the vertices correspond to
elements and flats, and there is an edge between two vertices if the corresponding
element is contained in the corresponding flat. The divisor DM is simply the sum
of the vertices corresponding to elements of E. A combinatorial argument then
shows that the rank of DM is precisely 2.

If M is realizable over k, then by definition, there exists a configuration of lines
in P2

k where the lines correspond to the elements of E, and the flats correspond
to points where two or more of the lines intersect. If we blow up the plane at
the intersection points, the dual graph of the resulting configuration is the Levi
graph GM , and the pullback of the hyperplane class specializes to the divisor DM .
After some technical deformation arguments, one then sees that the pair (GM , DM )
admits a lifting when M is realizable over k.

For the converse, one must essentially show that the above construction is the
only possibility. That is, if C is a regular semistable curve over k[[t]], the dual
graph of the central fiber is GM and the divisor DM is the specialization of a rank
2 divisor on C, then in fact the image of the central fiber under the corresponding
linear series must provide a realization of the matroid M in P2

k.

11. Bounding the Number of Rational Points on Curves

By Faltings’ Theorem (née the Mordell Conjecture), if C is a curve of genus g ≥ 2
over a number field K then the set C(K) of rational points on C is finite. Shortly
after Faltings proved this theorem, Vojta published a new proof which furnishes
an effective upper bound on the number of points in C(K). However, the Vojta
bound is completely theoretical — to our knowledge no one has ever written down
the bound explicitly (and the bound is surely quite far from optimal). None of the
existing proofs of the Mordell Conjecture gives an algorithm — even in theory! —
to compute the set C(K). And in practice the situation is even worse — it seems
safe to say that no one has ever used the Faltings or Vojta proofs of the Mordell
Conjecture to compute C(K) in a single non-trivial example.

11.1. The Katz–Zureick-Brown refinement of Coleman’s bound. One of
the first significant results in the direction of the Mordell Conjecture was Chabauty’s
theorem that C(K) is finite provided that the rank of the finitely generated abelian
group Jac(C)(K) is less than g. Much later, Coleman used his theory of p-adic
integration to give an effective upper bound on C(K) in this situation. Coleman’s
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bound has the advantage of being sharp in certain cases, and the method of proof
can be used to compute C(K) in a wide range of concrete examples. For simplicity,
we state the results in this section for K = Q only, but everything extends with
minor modifications to curves over a number field K. Coleman’s theorem is as
follows.

Theorem 11.1. [Col85] Let C be a curve of genus g over Q, and suppose that the
Mordell-Weil rank r of Jac(C)(Q) is strictly less than the genus g. Then for every
prime p > 2g of good reduction for C, we have

(2) #C(Q) ≤ #C(Fp) + 2g − 2.

Coleman’s theorem was subsequently strengthened in different ways. In [LT02],
Lorenzini and Tucker (see also McCallum–Poonen [MP12]) generalized Theorem 11.1
to primes of bad reduction, replacing C(Fp) in (2) by the smooth Fp-points of the
special fiber of the minimal proper regular model for C over Zp. Stoll replaced
the quantity 2g − 2 in (2) by 2r when C has good reduction at p, and asked if this
improvement could be established in the bad reduction case as well. Stoll’s question
was answered affirmatively by Katz and Zureick-Brown in [KZB13] by supplement-
ing Stoll’s method with results from the theory of linear series on tropical curves:

Theorem 11.2. [KZB13] Let C be a curve of genus g over Q and suppose that the
rank r of Jac(C)(Q) is less than g. Then for every prime p > 2r + 2, we have

#C(Q) ≤ #Csm(Fp) + 2r,

where C denotes the minimal proper regular model of C over Zp.

In order to explain the relevance of linear series on tropical curves to such a result,
we need to briefly explain the basic ideas underlying the previous work of Coleman
et. al. Let us first outline a proof of Theorem 11.1. Fix a rational point P ∈ C(Q)
(if no such point exists, then the theorem is vacuously true) and let ι : C ↪→ J be
the corresponding Abel-Jacobi embedding. Coleman’s theory of p-adic integration
of 1-forms associates to each ω ∈ H0(C,Ω1

C) and Q ∈ C(Qp) a (definite) p-adic

integral
∫ Q
P
ω ∈ Qp, obtained by pulling back a corresponding p-adic integral on J

via the map ι. Locally on C, such p-adic integrals can be computed by formally
integrating a power series expansion fω(T ) for ω with respect to a local parameter

T on some residue disc U . One can show fairly easily that the p-adic closure J(Q)
of J(Q) in J(Qp) has dimension at most r as a p-adic manifold. The formalism
of Coleman’s theory implies that forcing the p-adic integral of a 1-form on J to
vanish identically on J(Q) imposes at most r linear conditions on H0(J,Ω1

J). The
functoriality of Coleman integration implies that the Qp-vector space Vchab of all

ω ∈ H0(C,Ω1
C) such that

∫ Q
P
ω = 0 for all Q ∈ C(Q) has dimension at least

g − r > 0.

The condition p > 2g implies, by a p-adic analogue of Rolle’s theorem which can
be proved in an elementary way with Newton polygons, that if fω(T ) has n zeroes
on U then

∫
fω(T ) dT has at most n + 1 zeroes on U . Using this observation,

Coleman deduces, by summing over all residue classes, that if ω is a nonzero 1-form
in H0(C,Ω1

C) vanishing on all of C(Q) then

#C(Q) ≤
∑

Q∈C̄(Fp)

(
1 + ordQω

)
,
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where ω denotes the reduction of ω to C̄. Since the 1-form ω on C̄ has a total of
2g − 2 zeros counting multiplicity, we have∑

Q∈C̄(Fp)

ordQω ≤ 2g − 2,

which yields Coleman’s bound.

Stoll observed in [Sto06] that one could do better than this by adapting the
differential ω to the point Q rather than using the same differential ω for all residue
classes. Define the Chabauty divisor

Dchab =
∑

Q∈C̄(Fp)

nQ(Q),

where nQ is the minimum over all nonzero ω in Vchab of ordQω, and let d be the
degree of Dchab. Since Dchab and KC̄ − Dchab are both equivalent to effective
divisors, Clifford’s inequality (applied to the smooth proper curve C̄) implies that

h0(KC̄ −Dchab)− 1 ≤ 1

2
(2g − 2− d).

On the other hand, the semicontinuity of h0(D) = r(D) + 1 under specialization
shows that h0(Dchab) ≥ dimVchab ≥ g − r. Combining these inequalities gives

g − r − 1 ≤ 1

2
(2g − 2− d)

and thus d ≤ 2r, giving Stoll’s refinement of Coleman’s bound.

Lorenzini and Tucker [LT02] had shown earlier that one can generalize Coleman’s
bound to the case of bad reduction as follows. Since points of C(Q) specialize to
the set C̄sm(Fp) of smooth Fp-points on the special fiber of C under the reduction
map, one obtains by an argument similar to the one above the bound

(3) #C(Q) ≤
∑

Q∈C̄sm(Fp)

(
1 + nQ

)
,

where ω denotes the reduction of ω to the unique irreducible component of the spe-
cial fiber of C containing Q. Choosing a nonzero ω ∈ Vchab as in Coleman’s bound,
the fact that the relative dualizing sheaf for C has degree 2g−2 gives the Lorenzini-
Tucker bound. A similar argument was found independently by McCallum and
Poonen [MP12].

We now explain where the subtlety occurs when one tries to combine the bounds
of Stoll and Lorenzini–Tucker. As above, we define the Chabauty divisor

Dchab =
∑

Q∈C̄sm(Fp)

nQ(Q)

and we let d be its degree. As in the case where C has good reduction, the goal is
to show that d ≤ 2r. When C has good reduction, Stoll proves this by combining
the semicontinuity of h0 and Clifford’s inequality. For singular curves, one can
still define h0 of a line bundle and it satisfies the desired semicontinuity theorem.
However, even when C has semistable reduction, it is well-known that Clifford’s
inequality does not hold in the form needed here. Katz and Zureick-Brown replace
the use of Clifford’s inequality in Stoll’s argument by a hybrid between the classical
Clifford inequality and Clifford’s inequality for linear series on tropical curves. In
this way, they are able to obtain the desired bound d ≤ 2r.
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We briefly highlight the main steps in the argument, following the reformulation
in terms of metrized complexes given in [AB12].

1. As noted by Katz and Zureick-Brown, if one makes a base change from Qp to
an extension field over which there is a regular semistable model C′ for C dominating
the base change of C, the corresponding Chabauty divisors satisfy D′chab ≥ Dchab.
We may therefore assume that C is a regular semistable model for C.

2. Let s = dimVchab − 1. We can identify Vchab with an (s + 1)-dimensional
space W of rational functions on C in the usual way by identifying H0(C,Ω1

C) with
L(KC). The divisor Dchab on C̄sm defines in a natural way a divisor D of degree d
on the metrized complex C associated to C. We can promote the divisor KC − D
to a limit linear series (KC −D, {Hv}) by defining Hv to be the reduction of W to
Cv for each v ∈ V (G). By the definition of Dchab, each element of Hv vanishes to
order at least nQ at each point Q in supp(Dchab)∩Cv. The Specialization Theorem
for limit linear series on metrized complexes then shows that

rC(KC −D) ≥ s ≥ g − r − 1.

3. On the other hand, Clifford’s inequality for metrized complexes implies that

rC(KC −D) ≤ 1

2
(2g − 2− d).

Combining these inequalities gives d ≤ 2r as desired.

11.2. The uniformity theorems of Katz–Rabinoff–Zureick-Brown. Together
with Joe Rabinoff, Katz and Zureick-Brown have recently used linear series on trop-
ical curves to refine another result due to Michael Stoll. In [CHM97], Caporaso,
Harris, and Mazur proved that if one assumes the Bombieri–Lang conjecture then
there is a uniform bound M(g,K) depending only on g and the number field K
such that |C(K)| ≤ M(g,K) for every curve C of genus g ≥ 2 over K. The
Bombieri–Lang conjecture, which asserts that the set of rational points on a va-
riety of general type over a number field is not Zariski dense, remains wide open,
and until recently little progress had been made in the direction of unconditional
proofs of the Caporaso–Harris–Mazur result. In [Sto13], Stoll proved that a uni-
form bound M(g,K) exists for hyperelliptic curves provided that one assumes in
addition that the Mordell–Weil rank of Jac(C)(K) is at most g−3. Katz, Rabinoff,
and Zureick-Brown succeeded in removing the hypothesis in Stoll’s theorem that C
is hyperelliptic, obtaining the following result.

Theorem 11.3. [KRZB15] There is an explicit bound N(g, d) such that if C is a
curve of genus g ≥ 3 defined over a number field K of degree d over Q and having
Mordell-Weil rank r ≤ g − 3, then

#C(K) ≤ N(g, d).

When K = Q, one can take N(g, 1) = 76g2 − 82g + 22.

Note that the bound in Theorem 11.2 is not uniform, because the quantity
|Csm(Fp)| can be arbitrarily large for a given prime p of bad reduction, and the
smallest prime p of good reduction can be arbitrarily large as a function of g.
Stoll’s main new idea was to apply the Chabauty-Coleman method on residue annuli
instead of just on discs. Stoll’s proof exploits the concrete description of differentials
on a hyperelliptic curve as f(x)dx/y; the restriction of such a differential to an
annulus has a bounded numerator, and Stoll is able to analyze the zeroes of the
resulting p-adic integral via explicit computations with Newton polygons.
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For general curves, such an explicit description of differentials and the Newton
polygons of their p-adic integrals is not possible. This is where the theory of linear
systems on metric graphs becomes useful. To circumvent the difficulty posed by not
having an explicit description of differentials on C, Katz, Rabinoff, and Zureick-
Brown generalize the Slope Formula (Theorem 6.4) to sections of a metrized line
bundle. For a differential ω, the associated tropical function F = log |ω| on the

skeleton Γ of C belongs to the space R(K#
Γ ) of tropical rational functions G with

K#
Γ + div(G) ≥ 0. (The absolute value here comes from a natural formal metric on

the canonical bundle.) Belonging to R(K#
Γ ) gives strong constraints on the slopes

of F , and hence on the number of zeroes of the p-adic integral of ω. The Slope
Formula thus replaces the Newton polygons in Stoll’s arguments, and estimates on
the slopes of the Newton polygon are replaced by properties of the tropical linear

series |K#
Γ |.

A major issue one faces in trying to establish Theorem 11.3 (which also shows
up in the earlier work of Stoll) is that when C has bad reduction at p, there
are two different kinds of p-adic integrals which need to be considered. On the
one hand, there are the p-adic Abelian integrals studied by Colmez, Zarhin, and
Vologodsky, which have no periods and are obtained by pulling back the logarithm
map on the p-adic Lie group Jac(C)(Qp) to C. These are the integrals for which
one knows that dim(Vchab) ≥ g − r. On the other hand, there are the p-adic
integrals of Berkovich and Coleman–de Shalit which do have periods but also have
better functoriality properties. These are the integrals which are given locally on
residue annuli of a semistable model C by formally integrating a local Laurent series
expansion of ω ∈ H0(C,Ω1). In order to prove Theorem 11.3, one needs to study
the difference between the two kinds of p-adic integrals. One of the new discoveries
of Katz, Rabinoff, and Zureick-Brown is that the difference can be understood
quite concretely using tropical geometry by combining Theorem 6.5 with Raynaud’s
uniformization theory.

The methods used by Katz–Rabinoff–Zureick-Brown in [KRZB15] also provide
new results in the direction of a “uniform Manin-Mumford conjecture”. The Manin–
Mumford conjecture, proved by Raynaud, asserts that if C is a curve of genus at
least 2 embedded in its Jacobian via an Abel-Jacobi map ι : C → Jac(C), then
ι(C) ∩ Jac(C)(K)tors is finite. One can ask whether there is a uniform bound on
the size of this intersection as one varies over all curves of a fixed genus g. The
following uniform result for the number of K-rational points on C which are torsion
on J is proved in [KRZB15]:

Theorem 11.4. There is an explicit bound N(g, d)tors (which one can equal to the
bound N(g, d) above) such that if C is a curve of genus g ≥ 3 defined over a number
field K of degree d over Q and ι : C → Jac(C) is an Abel-Jacobi embedding defined
over K, then

#ι(C) ∩ Jac(C)(K)tors ≤ N(g, d)tors.

Note that in Theorem 11.4 there is no restriction on the Mordell–Weil rank of
Jac(C). It has been conjectured that #A(K)tors is bounded uniformly in terms of
[K : Q] and g for all abelian varieties of dimension g over K, which would of course
imply Theorem 11.4 as a special case, but this is known only for g = 1 [Mer96] and
the general case seems far out of reach at present.

Katz, Rabinoff, and Zureick-Brown also prove a uniformity result concerning
the number of geometric (K-rational) torsion points lying on C, under a technical
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assumption about the structure of the stable model at some prime p. We refer to
[KRZB15] for the precise statement.

12. Limiting Behavior of Weierstrass Points in Degenerating Families

The theory discussed in this paper has interesting applications to the behavior
of Weierstrass points under specialization. To motivate this kind of question, we
begin with a seemingly unrelated classical result due to Andrew Ogg [Ogg78].

12.1. Weierstrass points on modular curves. Let N be a positive integer. The
finite-dimensional space S = S2(Γ0(N)) of weight 2 cusp forms for the congruence
subgroup Γ0(N) of SL2(Z) is an important object in number theory. An element
f ∈ S has a q-expansion of the form f =

∑∞
n=1 anq

n with an ∈ C, which uniquely
determines f . For f 6= 0 in S, define

(4) ord(f) = inf{n | an 6= 0} − 1.

If g = g0(N) = dim(S), then by Gaussian elimination there exists an element
f ∈ S with ord(f) ≥ g − 1. Is there any unexpected cancellation? Under certain
restrictions on the level N , the answer is no:

Theorem 12.1. [Ogg78] If N = pM with p prime, p - M , and g0(M) = 0 then
there is no nonzero element f of S2(Γ0(N)) with ord(f) ≥ g. (In particular, this
holds if N = p is prime.)

One can give an enlightening proof of Ogg’s theorem using specialization of divi-
sors from curves to metric graphs; the following argument is taken from [Bak08b].

First of all, Ogg’s theorem can be recast in the following purely geometric way,
which is in fact how Ogg formulated and proved the result in [Ogg78]:

Theorem 12.2. If N = pM with p prime, p -M , and g0(M) = 0 then the cusp ∞
is not a Weierstrass point on the modular curve X0(N).

Recall that a point P on a genus g curve X is called a Weierstrass point if there
exists a holomorphic differential ω ∈ H0(X,Ω1

X) vanishing to order at least g at
P . To see the equivalence between Theorems 12.1 and 12.2, recall that q is an
analytic local parameter on X0(N) at the cusp ∞ and the map f 7→ f(q)dqq gives

an isomorphism between S2(Γ0(N)) and the space of holomorphic differentials on
X0(N). Under this isomorphism, the function ord defined in (4) becomes the order
of vanishing of the corresponding differential at ∞. So there is a nonzero element
f of S2(Γ0(N)) with ord(f) ≥ g if and only if there is a nonzero holomorphic
differential ω vanishing to order at least g at ∞.

The reduction of X = X0(N) modulo p when p exactly divides N = pM is well-
understood; the special fiber of the so-called Deligne-Rapoport model for X0(N) over
Zp consists of two copies of X0(M) intersecting transversely at the supersingular
points in characteristic p. This model is always semistable but is not in general
regular. (It is very easy to describe the minimal regular model, but we will not
need this here.) In any case, the skeleton Γ of X0(N) over Qp is a “metric banana
graph” consisting of two vertices connected by a number of edges, as pictured in
Figure 16, and the cusp∞ specializes to one of the two vertices, call it P . Under the
hypotheses of Theorem 12.1, each X0(M) is a rational curve and so the genus of Γ
is equal to the genus of X0(N). That is, there are g+1 edges. By the Specialization
Theorem, if there is a nonzero global section of KX vanishing to order at least g at
∞, then r(KΓ − gP ) ≥ 0. However, since KΓ = (g − 1)P + (g − 1)Q, where Q is
the other vertex, we have KΓ − gP = (g − 1)Q− P , which is P -reduced by Dhar’s
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algorithm and non-effective. Therefore r(KΓ − gP ) = −1, and Ogg’s theorem is
proved.

Figure 16. The “Banana” Graph of Genus 2

12.2. Specialization of Weierstrass points. The essence of the above argument
is that if C is a totally degenerate curve, meaning that the genus of its minimal
skeleton Γ equals the genus of C, then the Weierstrass points on C must specialize
to Weierstrass points on Γ, where a Weierstrass point on Γ is a point P such that
r(KΓ−gP ) ≥ 0. It follows from the Specialization Theorem and the corresponding
fact from algebraic geometry that if Γ is a metric graph of genus g ≥ 2 then the set
of Weierstrass points on Γ is non-empty. A purely combinatorial proof of this fact
was given by Amini [Ami13].

The specialization of Weierstrass points is also a natural thing to study from
the purely algebro-geometric point of view, where one is asking about the limiting
behavior of the Weierstrass points in a semistable one-parameter family of curves.
This subject, which was previously studied by Eisenbud-Harris [EH87], Esteves-
Medeiros [EM00], and several other authors, has seen important recent advances
by Amini [Ami14]. We now summarize the main results proved in Amini’s paper.

Let L be a line bundle of degree d and rank r ≥ 0 on a curve C of genus g over
an algebraically closed field k of characteristic zero. Given a point P ∈ C(k), we
define the vanishing set SP (L) of L at P to be the set of orders of vanishing of
global sections of L at P . We have |SP (L)| = r+1 for all P ∈ C(k), and for all but
finitely many P ∈ C(k) the vanishing set is [r] := {0, 1, . . . , r}. A point P ∈ C(k)
whose vanishing set is not [r] is called a Weierstrass point for L. Equivalently, P
is a Weierstrass point for L if there exists a global section of L vanishing to order
at least r + 1 at P . A Weierstrass point of C is by definition a Weierstrass point
for the canonical bundle KC .

The L-weight of a point P ∈ C(k) is

wtP (L) =

 ∑
m∈SP (L)

m

− (r + 1

2

)
=

∑
m∈SP (L)

m−
∑
i∈[r]

i.

Thus wtP (L) ≥ 0 for all P ∈ C(k) and wtP (L) > 0 if and only if P is a Weierstrass
point for L. The Weierstrass divisor for L is W = W(L) =

∑
P∈C(k) wtP (L)(P ).

If we fix a basis F for H0(C,L), the corresponding Wronskian WrF is a nonzero

global section of L⊗(r+1)⊗K⊗
r(r+1)

2

C whose divisor is preciselyW(L). In particular,
the degree of W(L) (i.e., the total number of Weierstrass points counted according
to their weights) is W (L) := d(r + 1) + (g − 1)r(r + 1).

We seek an explicit formula for Trop(W). For this, it is convenient to fix a divisor
with L = L(D), and to define as usual L(D) = {f ∈ k(C)∗ | div(f) + D ≥ 0}.
Let DΓ =

∑
x∈Γ dx(x) be the specialization Trop(D) of D to Γ. Let K#

Γ be the
canonical divisor of Γ considered as a vertex-weighted metric graph, as in §4.4.

Concretely, we have K#
Γ =

∑
x∈Γ (2gx − 2 + val(x))x.
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For a tangent direction ν at x, define Sν(D) to be the set of integers occurring as
sν(f) for some f ∈ L(D), where sν(f) is defined as in §6 to be the slope of trop(f)
in the tangent direction ν. Since sν(f) coincides with the order of vanishing of the
normalized reduction f̄x at the point of Cx corresponding to ν, one sees easily that
|Sν(D)| = r + 1.

For x ∈ Γ, let

Sx(D) =

{ ∑
ν∈Tx(Γ)

(∑
s∈Sν(D) s

)
if x is of type-2

0 otherwise,

where Tx(Γ) denotes the set of tangent directions at x in Γ, and let

S(D) =
∑
x∈Γ

Sx(D)x.

Note that deg(S(D)) = 0, since if f ∈ k(C)∗ then the slope of F = − log |f |
along an oriented edge ~e of Γ is the negative of the slope of F along the same edge
with the orientation reversed.

The following formula is due to Amini. When Γ is the skeleton of a semistable
R-model C for C, the formula shows how the Weierstrass points of the generic fiber
C specialize to the various components of the special fiber of C, providing a simple
and satisfying answer to a question of Eisenbud and Harris.

Theorem 12.3. [Ami13] Let Trop : Can → Γ be the natural retraction map. Then

(5) Trop(W(L)) = (r + 1) Trop(D) +

(
r + 1

2

)
K#

Γ − S(D).

Note that since deg(S(D)) = 0, the degree of the right-hand side of (5) is W (L) =
deg(W(L)) as expected. Amini also proves an analogue of (5) when the residue field
of k has positive characteristic. As this is more technical to state, we will not discuss
this here.

Remark 12.4. A metric graph can have infinitely many Weierstrass points; this
happens, for example, with the banana graphs of genus g ≥ 3 discussed above (see
[Bak08b]). In general, the set of Weierstrass points on a metric graph Γ is a finite
disjoint union of closed connected sets. It is an open problem to determine whether
there are intrinsic multiplicities m(A) attached to each connected component A of
the Weierstrass locus on a metric graph Γ such that for any curve C having Γ as a
skeleton, exactly m(A) Weierstrass points of C tropicalize to A.

12.3. Distribution of Weierstrass points. Amini uses formula (5) to prove a
non-Archimedean analogue of the Mumford-Neeman equidistribution theorem, pre-
viously conjectured by the first author of this survey. We first recall the statement
of the latter result, and then present Amini’s analogous theorem.

Let C be a compact Riemann surface of genus at least 1. There is a natural
volume form ωAr on C, called the Arakelov form, which can be defined as follows.
Let ω1, . . . , ωg be a orthonormal basis of L(KC) with respect to the Hermitian inner
product

〈ω, ν〉 =
i

2

∫
C

ω ∧ ν̄.

Then the (1, 1)-form ωC = i
2

∑g
j=1 ωj ∧ ω̄j does not depend on the choice of

ω1, . . . , ωg and has total mass g. We thus define

ωAr =
1

g
ωC .
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Geometrically, the curvature form of ωC is the pullback of the curvature form
of the flat metric on the Jacobian J of C with respect to any Abel-Jacobi map
C → J . Since the flat metric on J is translation-invariant, the pullback in question
is independent of the choice of base point in the definition of the Abel-Jacobi map.

The Mumford-Neeman theorem [Nee84] asserts that for any ample line bundle
L on C, the Weierstrass points of L⊗n become equidistributed with respect to ωAr

as n tends to infinity:

Theorem 12.5. Let C be a compact Riemann surface of genus at least 1 and let
L be an ample line bundle on C. Let

δn =
1

W (L⊗n)

∑
P∈C

wtP (L⊗n)δP

be the probability measure supported equally on the Weierstrass points of L⊗n. Then
as n tends to infinity, the measures δn converge weakly13 to the Arakelov metric ωAr.

In order to state Amini’s non-Archimedean analogue of Theorem 12.5 , we will
first define the analogue of the Zhang measure on Berkovich curves following [BF11].

Let Γ be a metric graph of genus g. We fix a weighted graph model G of Γ and
for each edge e of G let `(e) denote the length of e. For each spanning tree T of G,
let e1, . . . , eg denote the edges of G not belonging to T , and let

µT =

g∑
j=1

λ(ej)

where λ(e) is Lebesgue measure along e, normalized to have total mass 1 (so that
µT has total mass g). We also let w(T ) =

∏g
j=1 `(ej), and let

w(G) =
∑
T

w(T )

be the sum of w(T ) over all spanning trees T of G. Then the measure

µΓ =
∑
T

w(T )

w(G)
µT

is a weighted average of the measures µT over all spanning trees T , and in particular
has total mass g.

In other words, a random point in the complement of a random spanning tree of
G is distributed according to the probability measure 1

gµΓ.

Now let C be an algebraic curve of genus g ≥ 1 over the non-Archimedean field k
of equal characteristic zero, and let Γ be a skeleton of Can. The push-forward ι∗(µΓ)
of µΓ to Can with respect to the natural inclusion ι : Γ→ Can is independent of the
choice of Γ, and has total mass equal to the genus gΓ of Γ. Since gΓ+

∑
x∈Can gx = g,

it follows that the canonically defined measure

µC := ι∗(µΓ) +
∑
x∈Can

gxδx

has total mass g. We define the Zhang measure on Can to be the probability measure

µZh :=
1

g
µC .

13This means that for every continuous function f : C → R, we have
∫
C f δn =

∫
C f ωAr.
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Remark 12.6. The measure µZh, which was first introduced by Shouwu Zhang
in [Zha93], plays the role in the non-Archimedean setting of the Arakelov volume
form. Using a result of Heinz [Hei04] and the recent work of Chambert-Loir–
Ducros [CLD12] and Gubler–Kunnemann [GK14] on non-Archimedean Arakelov
theory, one can show that, as in the Archimedean case, µC is obtained by pulling
back the curvature form of a canonical translation-invariant metric on J via an
Abel-Jacobi map. There is also evidently a close connection between the measure
µΓ and the polyhedral decomposition {CT } of Picg(Γ) associated to G (cf. §5.4)
which is deserving of further study.

Theorem 12.7. [Ami14] Let C be an algebraic curve of genus at least 1 over the
non-Archimedean field k of equal characteristic 0, and let L be an ample line bundle
on C. Let

δn =
1

W (L⊗n)

∑
P∈C

wtP (L⊗n)δP

be the probability measure supported equally on the Weierstrass points of L⊗n. Then
as n tends to infinity, the measures δn converge weakly on the Berkovich analytic
space Can to the Zhang measure µZh.

The proof of Theorem 12.7 is based on formula (5) together with the theory
of Okounkov bodies. The rough idea is that fixing a type-2 point x of Can and
a tangent direction ν at x, as well as a divisor D with L = L(D), the rational
numbers 1

nS
ν(nD) defined above become equidistributed in a real interval of length

d = deg(L) as n→∞. Combining this “local” equidistribution result with (5) and
a careful analysis of the variation of the minimum slope along edges of Γ gives the
desired result.

A new and concrete consequence of Theorem 12.7 is the following:

Corollary 12.8. Let C be an algebraic curve of genus at least 1 over a non-
Archimedean field k of equal characteristic 0, and let L be an ample line bundle
on C. Fix a strongly semistable model C for C over the valuation ring of k, let Z
be an irreducible component of the special fiber of C, and let gZ be the genus of Z.
Let WZ(L⊗n) be the set of Weierstrass points of L⊗n specializing to a nonsingular
point of Z. Then

lim
n→∞

|WZ(L⊗n)|
|W(L⊗n)|

=
gZ
g
.

13. Further Reading

There are many topics closely related to the contents of this paper which we have
not had space to discuss. Here is a brief and non-exhaustive list of some related
topics and papers which we recommend to the interested reader:

1. Harmonic morphisms. In algebraic geometry, a base-point free linear series
of rank r on a curve C is more or less the same thing as a morphism C → Pr. In
tropical geometry, the situation is much more subtle, and no satisfactory analogue
of this correspondence is known. For r = 1, there is a close relationship (although
not a precise correspondence) between tropical g1

d’s on a metric graph Γ and degree
d harmonic morphisms from Γ to a metric tree. The theory of harmonic morphisms
of metric graphs and metrized complexes of curves is explored in detail in the papers
[ABBR14a, ABBR14b, Cha13, LM14], among others.

2. Spectral bounds for gonality. In [CFK15], Cornelissen et. al. establish a
spectral lower bound for the stable gonality (in the sense of harmonic morphisms) of
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a graph G in terms of the smallest nonzero eigenvalue of the Laplacian of G. This
is a tropical analogue of the Li-Yau inequality for Riemann surfaces. They give
applications of their tropical Li-Yau inequality to uniform boundedness of torsion
points on rank two Drinfeld modules, as well as to lower bounds on the modular
degree of elliptic curves over function fields. The spectral bound from [CFK15]
was subsequently refined by Amini and Kool in [AK14] to a spectral lower bound
for the divisorial gonality (i.e., the minimal degree of a rank 1 divisor) of a metric
graph Γ. In [AK14], as well as in the related paper [DJKM14], this circle of ideas
is applied to show that the expected gonality of a random graph is asymptotic to
the number of vertices.

3. Tropical complexes. In [Car13], Cartwright formulates a higher-dimensional
analogue of the basic theory of linear series on graphs, including a Specialization
Theorem for the rank function. He calls the objects on which his higher-dimensional
linear series live tropical complexes. A generalization of the Slope Formula to the
context of non-Archimedean varieties and tropical complexes is proved in [GRW14].

4. Abstract versus embedded tropical curves. In this paper we have dealt exclu-
sively with linear series on abstract tropical curves (thought of as metric graphs)
and have eschewed the more traditional perspective of tropical varieties as non-
Archimedean amoebas associated to subvarieties of tori. The two approaches are
closely related, however: see for example [BPR11, GRW14, CDMY14]. The theory
of linear series on abstract tropical curves has concrete consequences for embedded
tropical curves, e.g. with respect to the theory of bitangents and theta character-
istics as in [BLM+14, CJ15].

5. Algebraic rank. In [Cap13], Caporaso introduces a notion of rank for divisors
on graphs known as the algebraic rank, which is defined geometrically by vary-
ing over all curves with the given dual graph and all line bundles with the given
specialization. The algebraic rank differs in general from the combinatorial rank
[CLM14], but the two invariants agree for hyperelliptic graphs and graphs of genus
3 [KY14a]. Many of the results we have discussed also hold for the algebraic rank.
For example, there are specialization, Riemann-Roch, and Clifford’s theorems for
algebraic rank [Cap13], and Mnëv universality holds for obstructions to the lifting
problem for algebraic rank [Len14].
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