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Abstract. We discuss GIT for canonically embedded genus four curves and

the connection to the Hassett–Keel program. A canonical genus four curve
is a complete intersection of a quadric and a cubic, and, in contrast to the

genus three case, there is a family of GIT quotients that depend on a choice

of linearization. We discuss the corresponding VGIT problem and show that
the resulting spaces give the final steps in the Hassett–Keel program for genus

four curves.

Introduction

The Hassett–Keel program aims to give modular interpretations of certain log
canonical models of Mg, the moduli space of stable curves of fixed genus g, with
the ultimate goal of giving a modular interpretation of the canonical model for the
case g � 0. The program, while relatively new, has attracted the attention of
a number of researchers, and has rapidly become one of the most active areas of
research concerning the moduli of curves. Perhaps the most successful approach so
far has been to compare these log canonical models to alternate compactifications
of Mg constructed via GIT on the spaces Hilbmg,ν , the so-called m-th Hilbert spaces
of ν-canonically embedded curves of genus g, for “small” ν and m (e.g. [HH09],
[HH08], [AH12]).

For large genus, completing the program in its entirety still seems somewhat out
of reach. On the other hand, the case of low genus curves affords a gateway to the
general case, providing motivation and corroboration of expected behavior. The
genus 2 and 3 cases were completed recently ([Has05], [HL10b]). In this paper, we
study the genus 4 case by focusing on the spaces Hilbm4,1; i.e. we study GIT quotients
of canonically embedded genus 4 curves. The main result is a complete description
of GIT stability on Hilbm4,1 for all m, as well as a proof that the resulting GIT
quotients give the final steps in the Hassett–Keel program for genus 4. Together
with previous work on the subject (see [HL10a], [Fed12], [CMJL12]), this completes
the program in genus 4 outside of a small range.

One of the key features of this paper is the technique employed. Using a space
we denote by PE (a smooth, elementary, birational model of the Hilbert scheme
parameterizing complete intersections) we fit all of the Hilbert quotients for canon-
ical genus 4 curves into a single variation of GIT problem (VGIT). In other words,
the final steps of the Hassett–Keel program in genus 4 are described by a VGIT
problem on a single space. Also of interest is a technical point that arises: we are
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forced to do VGIT for linearizations that lie outside of the ample cone. A priori
this leads to an ambiguity in the meaning of Mumford’s numerical criterion for sta-
bility. However we are able to circumvent this issue to provide a complete analysis
of the stability conditions on PE.

While examples of GIT for hypersurfaces are abundant in the literature (e.g.
[MFK94, §4.2], [Sha80], [All03], [Laz09]), this appears to be one of the first exam-
ples of GIT for complete intersections (see however [AM99] and [MM93] for (2, 2)
complete intersections, and Benoist [Ben11] for some generic stability results in a
situation similar to ours). Furthermore, unlike the projective spaces parameterizing
hypersurfaces or the Grassmannian parameterizing complete intersections of type
(d, . . . , d), the natural parameter space in our situation has Picard rank two, and
thus provides a natural setting for variation of GIT. We believe the techniques we
develop in this paper for studying VGIT for spaces of complete intersections will
have a number of further applications beyond moduli spaces of curves.

The Hassett–Keel program for genus 4 curves: known and new results.
To put our results in context, we recall some background on the Hassett–Keel
program. Namely, for α ∈ [0, 1], the log minimal models of Mg are defined to be
the projective varieties

Mg(α) := Proj

( ∞⊕
n=0

H0
(
n(KMg

+ αδ)
))

,

where δ is the boundary divisor in Mg. Hassett and Hyeon have explicitly con-

structed the log minimal models Mg(α) for α ≥ 7
10 − ε (see [HH09, HH08]). Hyeon

and Lee have also described the next stage of the program in the specific case that
g = 4 (see [HL10a]): as α decreases from 2

3 + ε to 2
3 , they construct a map that con-

tracts the locus of Weierstrass genus 2 tails, replacing them with A4 singularities.
Thus, the known spaces for the Hassett–Keel program in genus 4 are:

(0.1) M4 = M4[1, 9
11 )

��
M

ps

4 = M4[ 9
11 ,

7
10 )

**

// M
hs

4 = M4( 7
10 ,

2
3 )

uu ((
M

cs

4 = M4( 7
10 ) M4( 2

3 )

where the notation Mg(I) for an interval I means Mg(α) ∼= Mg(β) for all α, β ∈ I.
The double arrows correspond to divisorial contractions, the single arrows to small
contractions, and the dashed arrows to flips.

The main result of the paper is the construction of the log minimal models M4(α)
for α ≤ 5

9 via a VGIT analysis of canonically embedded curves in P3.

Main Theorem. For α ≤ 5
9 , the log minimal models M4(α) arise as GIT quotients

of the parameter space PE. Moreover, the VGIT problem gives us the following
diagram:
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(0.2)

M4( 5
9 ,

23
44 ) //

zz $$

M4( 23
44 ,

1
2 )

zz $$

// M4( 1
2 ,

29
60 )

zz "*
M4( 5

9 ) M4( 23
44 ) M4( 1

2 ) M4[ 29
60 ,

8
17 )

��
M4( 8

17 ) = {∗}

More specifically,

i) the end point M4( 8
17 + ε) is obtained via GIT for (3, 3) curves on P1 × P1

as discussed in [Fed12];
ii) the other end point M4( 5

9 ) is obtained via GIT for the Chow variety of
genus 4 canonical curves as discussed in [CMJL12];

iii) the remaining spaces M4(α) for α in the range 8
17 < α < 5

9 are obtained

via appropriate Hilbm4,1 quotients, with the exception of α = 23
44 .

Thus in genus 4, the remaining unknown range for the Hassett–Keel program is
the interval α ∈ ( 5

9 ,
2
3 ). Using the geometric meaning of the spaces M4(α) for α ≤ 5

9
and the predictions of [AFS10], we expect that there are exactly two more critical
values: α = 19

29 , when the divisor δ2 should be contracted to a point, and α = 49
83 ,

when the locus of curves with hyperelliptic normalization obtained by introducing
a cusp at a Weierstrass point should be flipped, being replaced by curves with
A6 singularities. We do not expect that these models can be obtained by further
varying the GIT problem we consider here. In fact, since each of these predicted
models arises prior to the predicted flip of the hyperelliptic locus (α = 5

9 ), they
should be unrelated to spaces of canonical curves. It is believed that each of these
two intermediate models ought to correspond to a quotient of the Hilbert scheme
of bicanonical curves.

GIT for canonical genus 4 curves. As already mentioned, GIT for pluricanon-
ical curves has long been used to produce projective models for the moduli space
of curves. For example Mumford used asymptotic stability for ν-canonical curves,
with ν ≥ 5, to show the projectivity of Mg, and recently the case ν < 5 has been
used in the Hassett–Keel program. The basic idea is that as the values ν and m
decrease one should obtain the log minimal models Mg(α) for progressively smaller
values of α (e.g. [FS10, Table 1]). Thus from the perspective of the Hassett–Keel
program, it is of interest to understand GIT for canonically embedded curves. This
turns out to be difficult, and to our knowledge the only case where the stability
conditions have been described completely prior to this paper is for genus 3. On
the other hand, it was recently proved (see [AFS12]) that the generic non-singular
canonical curve of arbitrary genus is stable. In this paper, we completely describe
the stability conditions for genus 4 canonical curves.

We set up the analysis of the GIT stability for canonical genus 4 curves as
follows. The canonical model of a smooth, non-hyperelliptic genus 4 curve is a
(2, 3)-complete intersection in P3. A natural parameter space for complete inter-
sections is a projective bundle PE → P9 on which G = SL(4,C) acts naturally.
Since rank(Pic(PE)) = 2, the GIT computation involves a choice of linearization
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parameterized by t ∈ Q+ ∪ {0} (corresponding to the linearization η + th, where η
is the pullback of O(1) from the space of quadrics P9 and h is the relative O(1)). In
this paper, we analyze the geometry of the quotients PE//tSL(4) as the linearization
varies and relate them to the Hassett–Keel spaces M(α). We note that a related
setup for GIT for complete intersections occurs in recent work of Benoist [Ben11].

One naturally identifies two special cases. First, for 0 < t � 1 one easily sees
that PE//tSL(4) coincides with the GIT quotient for (3, 3) curves on P1 × P1; this
was analyzed by Fedorchuk [Fed12]. At the other extreme, the case t = 2

3 was
shown in [CMJL12] to be isomorphic to both the quotient of the Chow variety
for genus 4 canonical curves, as well as to the Hassett–Keel space M4( 5

9 ). The
content of this paper is to describe the GIT quotient for the intermediary values t ∈
(0, 2

3 ). We work with PE, but show that all of the quotients of type Hilbm4,1 //SL(4)
arise in this way. The advantage of working with PE is that we have VGIT on
a single, elementary space, where the stability computation is straightforward and
corresponds directly to the variation of parameters.

Geometric description of the birational maps in the main theorem. As
mentioned, the Hassett–Keel program aims to give modular interpretations to the
spaces Mg(α) and to the birational maps between them. Essentially, as α decreases,

it is expected that Mg(α) parameterizes curves with increasingly complicated sin-

gularities, and at the same time special curves from Mg are removed (e.g. curves
with elliptic tails, or hyperelliptic curves, etc.). In the situation of our main result,
the maps of the diagram (0.2) are intuitively described as follows. In M4( 5

9 ), the
hyperelliptic locus is contracted, as is the locus of elliptic triboroughs, and the locus
of curves in ∆0 with hyperelliptic normalization obtained by gluing two points that
are conjugate under the hyperelliptic involution. The next map flips these loci,
replacing them with curves that have A8, D4, and A7 singularities, respectively.

The second flip (at α = 23
44 ) removes the locus of cuspidal curves whose nor-

malization is hyperelliptic, replacing them with curves possessing a separating A7

singularity. The third flip (at α = 1
2 ) removes the locus of nodal curves whose nor-

malization is hyperelliptic, replacing them with the union of a conic and a double
conic. Finally, the map to M4( 29

60 ) contracts the Gieseker–Petri divisor to a point,
corresponding to a triple conic. This geometric description of the various maps is
summarized in Tables 2 and 3 in §3.

We note that the critical slopes occurring in our analysis are in concordance with
the general predictions of Alper–Fedorchuk–Smyth [AFS10]. We also note that at
α = 5

9 and α = 23
44 , we observe a phenomenon that first occurs in genus 4. Namely,

the critical values at which the separating A5 and A7 singularities appear differ
from those at which the non-separating singularities appear.

Acknowldegements. The authors are grateful to O. Benoist and M. Fedorchuk
for discussions relevant to this paper, and for specific comments on an earlier draft.
We also thank the referees for detailed comments that have improved the paper.

Table of spaces. The following table, relating the parameters α, t and m, de-
scribes the relationships among the various spaces occurring in this paper. Note
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Mg(α) PE//tSL(4) m Hilbm4,1 //ΛmSL(4) Other

5
9

2
3 ∞ − Chow4,1 //Λ∞SL(4)(

23
44 ,

5
9

) (
6
11 ,

2
3

) (
17+
√

129
4 ,∞

)
≥ 8

23
44

6
11

17+
√

129
4 −(

1
2 ,

23
44

) (
2
5 ,

6
11

) (
4, 17+

√
129

4

)
5, 6, 7

1
2

2
5 4 4(

29
60 ,

1
2

) (
2
9 ,

2
5

) (
20
7 , 4

)
3(

8
17 ,

29
60

] (
0, 2

9

] (
2, 20

7

]
− |OP1×P1(3, 3)| //SO(4)

8
17 0 2 2

Table 1. Relationship among the spaces appearing in this paper.

that the following relations (see Proposition 1.8 and Theorem 7.1) hold:

t =
34α− 16

33α− 14
, α =

14t− 16

33t− 34
, t =


m−2
m+1 2 ≤ m ≤ 4,

2m2−8m+8
3m2−9m+8 m ≥ 5.

1. PE and its geometry

In this section we recall the projective bundle PE considered in [CMJL12] (see
also [Ben11] for a more general setup) parameterizing subschemes of P3 defined
by a quadric and a cubic. The primary aim is to describe various rational maps
from PE to projective space and their induced polarizations in terms of standard
generators for the Picard group.

1.1. Preliminaries. We start by recalling the definition of the bundle PE from
[CMJL12] and establishing some basic properties. We fix the notation

Vd := H0(P3,OP3(d))

for each d ∈ Z, and define Q to be the universal quadric:

Q −−−−→ P3 × PV2y yπ2

PV2 PV2.

There is an exact sequence of sheaves

(1.1) 0→ IQ → OP3×PV2
→ OQ → 0.

Setting π1 : P3 × PV2 → P3 (resp. π2 : P3 × PV2 → PV2) to be the first (resp.
second) projection, then tensoring (1.1) by π∗1OP3(3) and projecting with π2∗ we
obtain an exact sequence:

(1.2) 0→ π2∗(IQ ⊗ π∗1OP3(3))→ π2∗(π
∗
1OP3(3))→ π2∗(OQ ⊗ π∗1OP3(3))→ 0.

We will define the projective bundle PE using the locally free sheaf on the right.
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Definition 1.3. In the notation above, let E := π2∗(OQ ⊗ π∗1OP3(3)), E :=
SpecPV2

(E∨) and PE := ProjPV2
(E∨). We denote the natural projection as π :

PE → PV2.

Remark 1.4. Points of PE correspond to pairs ([q], [f ]) where [q] ∈ PV2 is the class
of a non-zero element q ∈ V2, and [f ] ∈ PE[q] is the class of a non-zero element
f ∈ V3/〈x0q, x1q, x2q, x3q〉. Sometimes we will instead consider f as an element of
V3 not lying in the span of 〈x0q, x1q, x2q, x3q〉. We will often write (q, f) rather
than ([q], [f ]) if there is no chance of confusion. This description motivates calling
PE the space of (2, 3)-subschemes in P3. Throughout, we will write U ⊂ PE for
the open subset of points (q, f) such that q and f do not have a common factor.
Note there is a non-flat family of sub-schemes of P3 over PE that restricts to a flat
family over U .

We point out that

(1.5) π2∗(π
∗
1OP3(3)) ∼= V3⊗COPV2

and π2∗ (IQ ⊗ π∗1OP3(3))) ∼= V1⊗COPV2
(−1),

so (1.2) can be written as

(1.6) 0→ V1 ⊗C OPV2(−1)→ V3 ⊗C OPV2 → E→ 0.

Remark 1.7. With this description of E, it is easy to describe many of the invariants
of E and PE. Setting x = c1(OPV2

(1)), the Chern character of E is ch(E) =

20− 4
∑∞
k=0

(−1)kxk

k! . Denoting the line bundles η = π∗OPV2(1) and h = OPE(1), it
is standard that Pic(PE) ∼= Zη ⊕ Zh, and

KPE = −14η − 16h.

We define the slope of a line bundle aη + bh (with a 6= 0) to be equal to t = b
a .

1.2. Morphisms to projective space. As mentioned above, there is a family

C −−−−→ P3 × PEy yπ2

PE PE.
of (2, 3)-subschemes of P3 parameterized by PE that is flat exactly over the lo-
cus U of points ([q], [f ]) such that q and f do not have a common linear factor.
Consequently, there is a birational map

PE 99K Hilb4,1

whose restriction to U is a morphism; here Hilb4,1 is the component of the Hilbert
scheme containing genus 4 canonical curves.

1.2.1. The moduli space of curves. The rational map Hilb4,1 99K M4 induces a
rational map

PE 99KM4.

Setting λ and δ to be the pull-backs of the corresponding classes on M4 one can
check (e.g. [CMJL12, §1]) that

λ = 4η + 4h,

δ = 33η + 34h.

Conversely, η = 17
2 λ− δ and h = − 33

4 λ+ δ.



VGIT FOR GENUS 4 CURVES 7

1.2.2. Grassmannians. For each point in Hilb4,1, we have an associated ideal sheaf
I ⊆ OP3 . The generic point of Hilb4,1 corresponds to a canonical curve, so that I
is the sheaf associated to a homogeneous ideal of the form (q, f) ⊆ C[X0, . . . , X3]
where q is a quadric and f is a cubic. Since q and f have no common irreducible
factors in this case, we get the following resolution of the ideal sheaf I:

0 −→ OP3(−5)
(f,−q)−→ OP3(−2)⊕ OP3(−3)

(qf)−→ I −→ 0.

It follows that

km := h0(I(m)) =

(
m+ 1

3

)
+

(
m

3

)
−
(
m− 2

3

)
.

Set

nm = h0(OP3(m)) =

(
m+ 3

3

)
.

With this notation, there is a rational map ψm : Hilb4,1 99K G(km, nm), and recall
that Hilbm4,1 is defined to be the closure of the image of ψm. The Plücker embedding
induces a linearization Λm on Hilbm4,1. Composing the rational map PE 99K Hilb4,1

with ψm defines a rational map

ϕm : PE 99K Hilbm4,1

that restricts to a morphism on the open set U ⊆ PE.
Since PE is smooth, and codimPE(PE \ U) ≥ 2, each line bundle on U has

a unique extension to a line bundle on PE; in other words, the restriction map
Pic(PE)→ Pic(U) is an isomorphism. Since the restriction of ϕm to U is regular,
there is a well defined pull-back

ϕ∗m : Pic(Hilbm4,1)→ Pic(PE)

given by the composition Pic(Hilbm4,1)
(ϕm|U )∗−−−−−→ Pic(U)→ Pic(PE).

Proposition 1.8. For all m ∈ N there is a rational map

ϕm : PE 99K Hilbm4,1

that restricts to a morphism on the open set U ⊆ PE of points ([q], [f ]) such that
q and f do not have a common linear factor. The pull-back of the polarization Λm
on Hilbm4,1 is given by the formula

ϕ∗mΛm =

((
m+ 1

3

)
−
(
m− 2

3

))
η +

((
m

3

)
−
(
m− 2

3

))
h,

where we use the convention that
(
a
b

)
= 0 if a < b. In particular, the slope of ϕ∗mΛm

is given by

t =


m−2
m+1 2 ≤ m ≤ 4

2m2−8m+8
3m2−9m+8 m ≥ 5.

Proof. This follows directly from the construction of ϕm and is left to the reader.
�
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1.2.3. The Chow variety. The Hilbert-Chow morphism ψ∞ : Hilb4,1 → Chow4,1

induces a birational map ϕ∞ : PE 99K Chow4,1. We will denote by Λ∞ the canonical
polarization on the Chow variety. The following was established in the proof of
[CMJL12, Thm. 2.11].

Proposition 1.9 ([CMJL12]). The birational map

ϕ∞ : PE 99K Chow4,1

restricts to a morphism on the locus of points ([q], [f ]) such that q and f do not
have a common linear factor. The pull-back of the canonical polarization Λ∞ on
Chow4,1 is proportional to 3η + 2h. �

Remark 1.10. There is a constant c ∈ Q+ such that limm→∞
1

3m2ψ
∗
mΛm = cψ∗∞Λ∞

(cf. [KM76, Thm. 4]). This is reflected in the slopes in Propositions 1.8 and 1.9.

1.3. Cones of divisors on PE. We now consider the nef cone and pseudoeffective
cone of PE. Benoist [Ben11] has determined the nef cones of more general spaces
of complete intersections. We state a special case of his result here, together with
a basic observation on the pseudoeffective cone.

Proposition 1.11 ([Ben11, Thm 2.7]). The nef cone of PE has extremal rays of
slope 0 and 1

2 . The pseudoeffective cone of PE has an extremal ray of slope 0 and

contains the ray of slope 34
33 .

Proof. The computation of the nef cone is in [Ben11, Thm 2.7]. For the pseudoef-
fective cone, on the one hand, η is effective (in fact semi-ample), but not big, so it
generates one boundary of the pseudoeffective cone. The discriminant divisor δ is
effective, establishing the other claim. �

1.4. The Rojas–Vainsencher resolution. Rojas–Vainsencher [RV02] have con-
structed an explicit resolution W of the rational map PE 99K Hilb4,1, giving a
diagram:

W

π1

}}

π2

##
PE // Hilb4,1 .

It is shown in [RV02, Thm. 3.1] that W can be obtained from PE via a sequence of
seven blow-ups along SL(4)-invariant smooth subvarieties, and the resulting space
W is isomorphic to PE along U ⊆ PE, the locus of complete intersections. In
particular, SL(4) acts on W (compatibly with the action on PE), and W is non-
singular.

2. Singularities of (2, 3)-complete intersections

In this section we discuss the possible isolated singularities of (2, 3)-complete
intersections in P3. Recall that given such a complete intersection, the quadric
is uniquely determined by the curve, while the cubic is only determined modulo
the quadric. In the GIT analysis, the only relevant cases are when the quadric
and cubic are not simultaneously singular, by which we mean that they have no
common singular points. In this case, we can choose either the quadric or cubic to
obtain local coordinates and view the singularities of C as planar singularities.
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2.1. Double Points. The only planar singularities of multiplicity two are the Ak
singularities. We will see later in our GIT analysis that when k is odd, it is impor-
tant to distinguish between two types of Ak singularities, those that separate the
curve and those that do not.

Proposition 2.1. There exists a reduced (2, 3)-complete intersection possessing a
non-separating singularity of type Ak if and only if k ≤ 8. Moreover, if C is a
(2, 3)-complete intersection with a separating Ak singularity at a smooth point of
the quadric on which it lies, then one of the following holds:

(1) k = 9, and C is the union of two twisted cubics.
(2) k = 7, and C is the union of a quartic and a conic.
(3) k = 5, and C is the union of a quintic and a line.

Proof. The local contribution of an Ak singularity to the genus is bk2 c. Since the
arithmetic genus of a (2, 3)-complete intersection is 4, it follows that it cannot
admit an Ak singularity if k ≥ 10. Conversely, it is easy to see that there exist
(2, 3)-complete intersections with non-separating singularities of type Ak for each
k ≤ 8 (e.g. see [Fed12, §2.3.7]).

If C possesses a separating singularity of type A2n−1, then C = C1∪C2, where C1

and C2 are connected curves meeting in a single point with multiplicity n. A case
by case analysis of the possibilities gives the second statement of the proposition.
It is straightforward to check that there is no (2, 3)-complete intersection with a
separating node or tacnode. �

2.2. Triple Points. Let C be a (2, 3)-complete intersection with a singularity of
multiplicity 3, which does not contain a line component meeting the residual curve
only at the singularity. Notice that projection from the singularity maps C onto a
cubic in P2. It follows that C is contained in the cone over this cubic. We choose
specific coordinates so that the singular point is p = (1, 0, 0, 0) and the tangent
space to the quadric at p is given by x3 = 0. Now, consider the 1-PS with weights
(1, 0, 0,−1). The flat limit of C under this one-parameter subgroup is cut out by
the equations:

x0x3 + q′(x1, x2) = f ′(x1, x2) = 0

where q′ and f ′ are forms in the variables x1, x2. We see that this limit is the union
of three (not necessarily distinct) conics meeting at the points p and (0, 0, 0, 1).

Following [Fed12] we will refer to these unions of conics as tangent cones. In
our GIT analysis we will see that, for a given linearization, the semistable tangent
cones are precisely the polystable (i.e. semi-stable with closed orbit) curves with
triple point singularities. Note that the conics are distinct if and only if the original
triple point is of type D4.

2.3. Curves on Singular Quadrics. As we vary the GIT parameters, we will see
that certain subloci of curves on singular quadrics are progressively destabilized. In
this section we briefly describe each of these loci. The first locus to be destabilized
is the set of curves lying on low-rank quadrics.

Proposition 2.2. The only reduced (2, 3)-complete intersections with more than
one component of positive genus consist of two genus one curves meeting in 3 points.
Such a curve necessarily lies on a quadric of rank 2, and moreover the general
complete intersection of a cubic and a rank 2 quadric is such a curve.
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Proof. Suppose that C = C1∪C2 is the union of two positive genus curves. Neither
curve may have degree 2 or less, and hence both have degree 3. Any degree 3 curve
that spans P3 is rational, and hence the two curves are both plane cubics. Since C
is contained in a unique quadric, it follows that this quadric must be the union of
two planes, and hence C is as described above. �

Following [AFS10], we refer to such curves as elliptic triboroughs. The locus of
elliptic triboroughs is expected to be flipped in the Hassett–Keel program at the
critical value α = 5

9 . This is exactly what we will prove in the following sections.
We now consider curves on a quadric of rank 3. More specifically, we will see that

a curve lies on a quadric cone if and only if its normalization admits a Gieseker–
Petri special linear series. The proposition below follows by a standard argument.
The result is not needed in the ensuing proofs, but is useful in giving a geometric
interpretation to the stability computations in later sections.

Proposition 2.3. Let C ⊂ P3 be a complete intersection of a cubic and a quadric
of rank at least 3, non-singular everywhere except possibly one point. Then the
following hold:

(1) If C is smooth, it has a vanishing theta-null if and only if it lies on a quadric
cone.

(2) The normalization of C is a hyperelliptic genus 3 curve if and only if C lies
on a quadric cone and has a node or cusp at the vertex.

(3) C is a tacnodal curve such that the two preimage points of the tacnode via
the normalization are conjugate under the hyperelliptic involution if and
only if C lies on a quadric cone and has a tacnode at the vertex.

�

3. The two boundary cases

In this section we describe two previously studied birational models for M4 that
are obtained via GIT for canonically embedded genus 4 curves (see [Fed12] and
[CMJL12]). In the later sections we will see that these two models coincide with
the “boundary cases” in our GIT problem. In other words, each of the models is
isomorphic to a quotient of PE//SL(4) for a certain choice of linearization, and all
of the other linearizations we consider are effective combinations of these two.

3.1. Chow Stability, following [CMJL12]. Let Chow4,1 denote the irreducible
component of the Chow variety containing genus 4 canonical curves. In [CMJL12],
the authors study the GIT quotient Chow4,1 //Λ∞SL(4) and obtain the following:

Theorem 3.1 ([CMJL12, Thm. 3.1]). The stability conditions for the quotient
Chow4,1 //Λ∞SL(4) are described as follows:

(0) Every semi-stable point c ∈ Chow4,1 is the cycle associated to a (2, 3)-
complete intersection in P3. The only non-reduced (2, 3)-complete intersec-
tions that give a semi-stable point c ∈ Chow4,1 are the genus 4 ribbons (all
with associated cycle equal to the twisted cubic with multiplicity 2).

Assume now C is a reduced (2, 3)-complete intersection in P3, with associated point
c ∈ Chow4,1. Let Q ⊆ P3 be the unique quadric containing C. The following hold:

(0’) c is unstable if C is the intersection of a quadric and a cubic that are
simultaneously singular. Thus, in items (1) and (2) below we can assume
C has only planar singularities.
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(1) c is stable if and only if rankQ ≥ 3 and C is a curve with at worst A1, . . . , A4

singularities at the smooth points of Q and at worst an A1 or A2 singularity
at the vertex of Q (if rankQ = 3).

(2) c is strictly semi-stable if and only if
i) rankQ = 4 and

(α) C contains a singularity of type D4 or A5, or,
(β) C contains a singularity of type Ak, k ≥ 6, and C does not

contain an irreducible component of degree ≤ 2, or,
ii) rankQ = 3, C has at worst an Ak, k ∈ N, singularity at the vertex of

Q and
(α) C contains a D4 or an A5 singularity at a smooth point of Q or

an A3 singularity at the vertex of Q, or,
(β) C contains a singularity of type Ak, k ≥ 6, at a smooth point of

Q or a singularity of type Ak, k ≥ 4, at the vertex of Q, and C
does not contain an irreducible component that is a line, or,

iii) rankQ = 2 and C meets the singular locus of Q in three distinct points.

Remark 3.2. In the example from [BE95, §7], it is shown that up to change of
coordinates there is only one canonically embedded ribbon of genus 4. Moreover,
it is shown that the ideal of this ribbon (again, up to change of coordinates) is
generated by the quadric q = x1x3 − x2

2 and the cubic

f = det

 x3 x2 x1

x2 x1 x0

x1 x0 0

 .

Remark 3.3. The closed orbits of semi-stable curves fall into 3 categories (see also
[CMJL12, Rem. 3.2, 3.3]):

(1) The curve CD = V (x0x3, x
3
1 +x3

2), consisting of three pairs of lines meeting
in two D4 singularities;

(2) The maximally degenerate curve C2A5 = V (x0x3−x1x2, x0x
2
2 +x2

1x3) with
two A5 singularities;

(3) The curves CA,B = V (x2
2− x1x3, Ax

3
1 +Bx0x1x2 + x2

0x3), of which there is
a pencil parameterized by 4A/B2. If 4A/B2 6= 0, 1, then CA,B has an A5

singularity at a smooth point of the singular quadric, and an A3 singularity
at the vertex of the cone. If 4A/B2 = 0, then CA,B has an A5 and A1

singularity at smooth points of the singular quadric, and an A3 singularity
at the vertex of the cone. If 4A/B2 = 1 the curve CA,B is the genus
4 ribbon, and the associated point in Chow4,1 is the twisted cubic with
multiplicity 2. Note also that the orbit closures of curves corresponding to
cases (2) i) (β) and (2) ii) (β) contain the orbit of the ribbon.

Moreover, we can describe the degenerations of the strictly semi-stable points c ∈
Chow4,1. Let C be a (2, 3)-scheme with strictly semi-stable cycle c ∈ Chow4,1. If
C contains a D4 singularity, or lies on a rank 2 quadric, then c degenerates to the
cycle associated to CD. If C lies on a quadric Q of rank at least 3, and either C
contains an A5 singularity at a smooth point of Q, or an A3 singularity at the vertex
of Q (if rankQ = 3), then c degenerates to either the cycle associated to C2A5 or to
the cycle associated to some CA,B with 4A/B2 6= 1. Otherwise, c degenerates to
CA,B with 4A/B2 = 1, a non-reduced complete intersection supported on a rational
normal curve.
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Additionally, it is shown in [CMJL12] that the quotient of the Chow variety
coincides with one of the Hassett–Keel spaces, specifically:

(3.4) Chow4,1 //Λ∞SL(4) ∼= M4

(
5

9

)
.

For the reader’s convenience, we briefly describe the birational contraction M4 99K
Chow4,1 //SL(4) in Table 2. In order to make sense of the table, we need to recall
some standard terminology. Specifically, a tail of genus i is a genus i connected
component of a curve that meets the residual curve in one point. Similarly, a bridge
of genus i is a genus i connected component of a curve that meets the residual curve
in two points. By conjugate points on a hyperelliptic curve, we mean points that
are conjugate under the hyperelliptic involution. An elliptic triborough is a genus
1 connected component of a curve that meets the residual curve in three points.

Semi-stable Singularity Locus Removed in M4

A2 elliptic tails
A3 elliptic bridges
A4 genus 2 tails attached at a Weierstrass point

non-separating A5 genus 2 bridges attached at conjugate points
separating A5 general genus 2 tails

A6 hyperelliptic genus 3 tails attached at a Weierstrass
point

non-separating A7 curves in ∆0 with hyperelliptic normalization glued
at conjugate points

A8, A9, ribbons hyperelliptic curves
D4 elliptic triboroughs

Table 2. The birational contraction M4 99K Chow4,1 //SL(4)

Remark 3.5. We note in particular that the rational map M4 99K Chow4,1 //SL(4)
contracts the boundary divisors ∆1 and ∆2, the closure of the hyperelliptic locus,
and the locus of elliptic triboroughs.

3.2. Terminal Stability (i.e. stability for (3, 3) curves on quadric surfaces)
following [Fed12]. Recall that every canonically embedded curve C of genus 4 is
contained in a quadric in P3. If this quadric is smooth, then it is isomorphic to
P1 × P1, and C is a member of the class |OP1×P1(3, 3)|. The automorphism group
of the quadric is SO(4), which is isogenous to SL(2) × SL(2). The GIT quotient
|O(3, 3)|//SO(4) was studied in detail by Fedorchuk in [Fed12]. Because this GIT
quotient appears as the last stage of the log minimal model program for M4, we
refer to curves that are (semi)stable with respect to this action as terminally
(semi)stable. We summarize the results of [Fed12] here.

Theorem 3.6 (Fedorchuk [Fed12, §2.2]). Let C ∈ |O(3, 3)|. C is terminally stable
if and only if its has at worst double points as singularities and it does not contain
a line component L meeting the residual curve C ′ = C \ L in exactly one point. C
is terminally semi-stable if and only if it contains neither a double-line component,
nor a line component L meeting the residual curve C ′ in exactly one point, which
is also a singular point of C ′ (i.e. L ∩ C ′ = {p} and p ∈ Sing(C ′)).
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Remark 3.7. The closed orbits of strictly semi-stable curves fall into 4 categories:

(1) The maximally degenerate curve C2A5
= V (x0x3−x1x2, x0x

2
2 +x2

1x3) with
2 A5 singularities (same curve as in Rem. 3.3(2));

(2) The triple conic V (x0x3 − x1x2, x
3
3);

(3) Unions of a smooth conic and a double conic meeting transversally. As
discussed in Remark 2.4 in [Fed12], there is a one-dimensional family of
such curves;

(4) Unions of three conics meeting in two D4 singularities V (x0x3−x1x2, x
3
1 +

x3
2) (analogue of the case of Rem. 3.3(1)).

As mentioned above, Fedorchuk [Fed12] showed that this GIT quotient is the
final non-trivial step in the Hassett–Keel program for genus 4, specifically:

(3.8) |O(3, 3)|//SO(4) ∼= M4

[
29

60
,

8

17

)
→M4

(
8

17

)
= {∗}.

In this paper we are interested in describing the behavior of the Hassett–Keel
program for genus 4 curves in the interval α ∈

[
8
17 ,

5
9

]
(with endpoints described by

(3.8) and (3.4) respectively). In particular, in the following sections, we will give
an explicit factorization of the birational map

Ψ : M4

(
5

9

)
∼= Chow4,1 //SL(4) 99K |O(3, 3)|//SO(4) ∼= M4

[
29

60
,

8

17

)
as the composition of two flips and a divisorial contraction.

For the moment, by comparing the stability conditions given by Theorems 3.1
and 3.6 and by simple geometric considerations, we obtain a rough description of
the birational map Ψ as summarized in Table 3 (see also [Fed12, Table 1]). The first
three lines of the table correspond to strictly semi-stable points of Chow4,1 that are

all flipped by the map M4( 5
9 − ε) → M4( 5

9 ). Then, note that every Chow-stable
curve contained in a quadric cone is terminally unstable. There are three types of
such curves: those that do not meet the vertex of the cone, those that meet it in a
node, and those that meet it in a cusp. These correspond to the latter three lines
in the table, as well as the three critical slopes in our VGIT problem. These last
three lines correspond, in order, to the flip at α = 23

44 , the flip at α = 1
2 , and the

divisorial contraction at α = 29
60 .

Semi-stable Singularity Locus Removed

non-separating A5 tacnodal curves glued at conjugate points
A6, non-sep. A7, A8, A9 ribbons (see Rem. 3.3(3))

D4 elliptic triboroughs
separating A7 cuspidal curves with hyperelliptic normalization

contains a double conic nodal curves with hyperelliptic normalization
triple conic curves with vanishing theta-null

Table 3. The birational map Chow4,1 //SL(4) 99K |O(3, 3)|//SO(4)
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4. Numerical stability of Points in PE

In this section we determine the stability conditions on PE as the slope t of
the linearization varies by using the Hilbert–Mumford numerical criterion. We
note that a discussion of the Hilbert–Mumford index in a related and more general
situation than ours was done by Benoist [Ben11], whose results we are using here.

A technical issue arises in this section. Namely, we are interested in applying
the numerical criterion for slopes t ∈

(
0, 2

3

]
. However, by Proposition 1.11, the

linearizations of slope t ≥ 1
2 are not ample. Thus, for t ≥ 1

2 , special care is needed
to define a GIT quotient PE//tSL(4) and to understand the stability conditions by
means of the numerical criterion. In this section we make the necessary modifica-
tions to handle this non-standard GIT case. Namely, here we work with “numerical”
(semi-)stability instead of the usual (Mumford) (semi-)stability. Then, in Section
6, we prove that there is no difference between the two notions of stability and that
everything has the expected behavior. In short, for slopes t ∈

(
0, 1

2

)
everything

works as usual, since the linearization is ample. For t ≥ 1
2 one can still proceed as

in the ample case, but this is justified only a posteriori by the results of Section 6.

4.1. The numerical criterion for PE. Let us start by recalling the Hilbert–
Mumford index for hypersurfaces. That is, we consider the case of SL(r+ 1) acting
on PH0(Pr,OPr (d)). In this case, given a one-parameter subgroup (1-PS) λ : Gm →
SL(r+1), the action on H0(Pr,OPr (1)) can be diagonalized. We describe the action
of λ in these coordinates with a weight vector α = (α0, α1, . . . , αr). For a monomial
xa = xa00 · · ·xarr ∈ H0(Pr,OPr (d)) in these coordinates, we define the λ-weight of
xa to be

wtλ(xa) = α.a = α0a0 + α1a1 + . . .+ αrar.

The Hilbert–Mumford invariant associated to a non-zero homogeneous form F ∈
H0(Pr,OPr (d)) and a 1-PS λ is then given by

µ(F, λ) = max
xa monomials in F

wtλ(xa).

Following [Ben11], the Hilbert–Mumford index for complete intersections V (f, q)
has a simple expression in terms of the indices for the associated hypersurfaces.

Proposition 4.1 ([Ben11, Prop 2.15]). The Hilbert–Mumford index of a point
([q], [f ]) ∈ PE is given by

µaη+bh(([q], [f ]), λ) = aµ(q, λ) + bµ(f, λ),

where f ∈ H0(P3,O(3)) is a representative of [f ] of minimal λ-weight.

Recall from §1.1 that the slope of the line bundle aη + bh is defined to be t =
b
a . Throughout we will write µt(([q], [f ]), λ) for the Hilbert–Mumford index with
respect to the linearization η + th.

Definition 4.2. We say that ([q], [f ]) is numerically t-stable (resp. numerically
t-semi-stable) if, for all non-trivial one-parameter subgroups λ,

µt(([q], [f ]), λ) > 0 (resp. ≥ 0 ).

While we will typically only refer to numerical (semi-)stability for points of PE,
we will occasionally want to refer to this notion in more generality. Recall that the
definition can be made in the situation where one has a reductive group G acting
on a proper space X with respect to a linearization L ([MFK94, Def. 2.1, p.48]).
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We will use the notation Xnss and Xns to refer to the numerically semi-stable, and
numerically stable loci respectively.

Remark 4.3. We recall that for the general GIT set-up, with a reductive group G
acting on a space X with respect to a linearization L, Mumford [MFK94, Def. 1.7]
defines a point x ∈ X to be semi-stable (and a similar definition for stable) if there
exists an invariant section σ ∈ H0(X,L⊗n) such that σ(x) 6= 0 and Xσ is affine. We
will use the standard notation X(s)s to denote the (semi-)stable points in this sense.
To emphasize the distinction with numerical (semi-)stability, and avoid confusion,
we will sometimes refer to this as Mumford (semi-)stability. For ample line bundles
on projective varieties, the Hilbert–Mumford numerical criterion ([MFK94, Thm.
2.1]) gives that numerical (semi-)stability agrees with (semi-)stability. If L is not
ample, however, the notions may differ (see e.g. Remark 4.4). In our situation,
we work with numerical stability, since it is easily computable; in the end (using
the results in Section 6), we will prove that this is same as Mumford stability. Of
course, this distinction is only relevant in the non-ample case (i.e. linearizations of
slopes t ≥ 1

2 ).

Remark 4.4. The following simple example illustrates some of the differences be-
tween numerical stability and Mumford stability. Let G be a reductive group acting
on a smooth projective variety X with dim(X) ≥ 2, and let L be an ample lin-
earization. Consider the blow-up π : X ′ → X along a closed G-invariant locus Z
(with codimZ ≥ 2) that contains at least one semi-stable point p ∈ Z ∩Xss. Note
that the rings of invariant sections R(X,L)G and R(X ′, π∗L)G agree via pullback
of sections, and the Hilbert-Mumford indices agree by functoriality ([MFK94, iii),
p.49]). It follows that any point q in the fiber π−1(p) (contained in the exceptional
divisor E) will be numerically semi-stable. But no such point can be Mumford
semi-stable, because the pull-back of a section σ that does not vanish at q does not
vanish on π−1(p), and consequently X ′σ can not be affine.

Notation 4.5. When considering GIT quotients, we will use the notation X//LG
for the categorical quotient of the semi-stable locus Xss ([MFK94, Thm. 1.10]); we
will call this the (categorical) GIT quotient. Note this may not necessarily agree
with ProjR(X,L)G when L is not ample.

4.2. Application of the numerical criterion. We begin our discussion by identi-
fying points of PE that fail to be numerically semi-stable for any linearization. Note
that in order to show that a certain pair ([q], [f ]) is not t-numerically semi-stable, it
suffices to find a 1-PS λ and a representative f such that µ(q, λ)+tµ(f, λ) < 0, since
for any representative f , one has µt(([q], [f ]), λ) ≤ µ(q, λ)+tµ(f, λ) (cf. Proposition
4.1).

Proposition 4.6. If q is a reducible quadric, then (q, f) is not numerically t-semi-
stable for any t < 2

3 . Moreover, if q and f share the common linear factor x0, then
(q, f) is destabilized by the 1-parameter subgroup with weights (−3, 1, 1, 1) for any
t ≤ 2

3 .

Proof. Suppose that q is singular along the line x2 = x3 = 0, and consider the
1-PS λ with weights (1, 1,−1,−1). Then µ(q, λ) = −2 and µ(f, λ) ≤ 3. Hence
µt((q, f), λ) < 0, so (q, f) is not numerically t-semi-stable.

To see the second statement, let λ be the 1-PS with weights (−3, 1, 1, 1) and note
that µ(q, λ) ≤ −2, µ(f, λ) ≤ −1. �
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Note that, as a consequence, every numerically t-semi-stable point of PE for
t < 2

3 is a complete intersection. The only points of PE that do not correspond
to complete intersections are those where q and f share a common linear factor.
Henceforth, we will refer interchangeably to stability of the point (q, f) ∈ PE and
stability of the curve C = V (q, f).

Proposition 4.7. If q and f are simultaneously singular, then (q, f) is not nu-
merically t-semi-stable for any t ≤ 2

3 .

Proof. Suppose that q and f are both singular at the point (1, 0, 0, 0), and consider
the 1-PS with weights (3,−1,−1,−1). Then µ(q, λ) = −2 and µ(f, λ) ≤ 1. Hence
µt((q, f), λ) ≤ − 4

3 < 0, so (q, f) is not numerically t-semi-stable. �

Proposition 4.8. Suppose that q is a quadric cone and f passes through the sin-
gular point p of q. If p is not a node or a cusp of C, then (q, f) is not numerically
t-semi-stable for any t < 2

3 .

Proof. Without loss of generality, we may assume that q = x1x3 − x2
2. We write

the cubic in coordinates as

f =
∑

a+b+c+d=3

αa,b,c,dx
a
0x
b
1x
c
2x
d
3.

If p = (1, 0, 0, 0) is not a node of C, then the projectivized tangent cone to C at p is
a double line contained in the quadric cone. Hence, the tangent space to the cubic
at p meets the quadric in a double line. We may therefore assume that this tangent
space is the plane x3 = 0. It follows that α3,0,0,0 = α2,1,0,0 = α2,0,1,0 = 0. Since
p is not a cusp, we have α1,2,0,0 = 0 as well. Now, consider the 1-PS with weights
(3, 1,−1,−3). Then µ(q, λ) = −2 and µ(f, λ) ≤ 3. It follows that µt((q, f), λ) < 0,
so (q, f) is not numerically t-semi-stable. �

Corollary 4.9. Ribbons are not numerically t-semi-stable for any t < 2
3 .

Proof. This follows from Remark 3.2 and the proposition above. �

Proposition 4.10. Suppose that C contains a line L and let C ′ = C\L be the
residual curve. If p ∈ L ∩ C ′ is a singular point of C ′, then C is not numerically
t-stable for any t ≤ 2

3 . If, in addition, L meets C ′ with multiplicity 3 at p, then C

is not numerically t-semi-stable for any t ≤ 2
3 . In particular, if C contains a double

line, then it is not numerically t-semi-stable for any t ≤ 2
3 .

Proof. By Propositions 4.6 and 4.8, we may assume that the singular point p =
(1, 0, 0, 0) is a smooth point of the quadric q. Without loss of generality, we may
assume that the line L is cut out by x2 = x3 = 0 and that the tangent plane to q
at p is cut out by x3 = 0. As above, we write the cubic in coordinates as

f =
∑

a+b+c+d=3

αa,b,c,dx
a
0x
b
1x
c
2x
d
3.

By replacing f with a cubic of the form f − (αx0 + βx1)q for suitable choices of
α and β, we obtain a representative for f such that α2,0,0,1 = α1,1,0,1 = 0. From
the assumption that C contains L, we may conclude that αa,3−a,0,0 = 0 (a =
0, 1, 2, 3). From the assumption that C ′ is singular at p, we may further conclude
that α2,0,1,0 = α1,1,1,0 = 0. Now consider the 1-PS λ with weights (1, 0, 0,−1).
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Then µ(q, λ) ≤ 0 and µ(f, λ) ≤ 0. It follows that µt((q, f), λ) ≤ 0, so (q, f) is not
numerically t-stable.

Let us now assume further that L meets C ′ with multiplicity 3 at p. Then
we obtain in addition that α0,2,1,0 = 0. Considering the 1-PS λ with weights
(3, 1,−1,−3), we see that µ(q, λ) ≤ 0 and µ(f, λ) ≤ −1. It follows that µt((q, f), λ) <
0, so (q, f) is not numerically t-semi-stable.

The case of a double line follows by taking the reduced line and its residual curve;
i.e. C = 2L+ C ′′ = L+ C ′ where C ′ = L+ C ′′. �

Proposition 4.11. If C has a singularity of multiplicity greater than two, it is not
numerically t-stable for any t ≤ 2

3 . Moreover, if C has a singularity of multiplicity

greater than three, it is not numerically t-semi-stable for any t ≤ 2
3 .

Proof. Without loss of generality, we may assume that the singular point is p =
(1, 0, 0, 0) and by Proposition 4.10 we may assume that C does not contain a line
L through p.

Let us first consider the case where p is a triple point. Because C does not
contain any lines L such that L ∩ C\L = {p}, projection from p maps C onto a
cubic in P2. Hence, C is contained in the cone over this cubic. Consequently, this
cone gives a representative f for [f ], which we will fix for the computations that
follow. Suppose now that the tangent space to the quadric at p is given by x3 = 0.
Then consider the 1-PS with weights (1, 0, 0,−1). We see that both µ(q, λ) ≤ 0
and µ(f, λ) ≤ 0 and hence C is not numerically t-stable for any t.

Now let us consider the case where p has multiplicity 4. Projection from p maps
C onto a conic in P2. Since C is contained in the cone over this conic, it follows
that p is the singular point of a quadric cone containing C. We have already seen,
however, that unless p is a node or cusp of C, then C is not numerically t-semi-
stable. �

We now consider three curves that are terminally semi-stable, but not Chow
semi-stable. We determine those values of t at which they become numerically
unstable.

Proposition 4.12. If C contains a conic C ′ that meets C\C ′ in an A7 singularity,
it is numerically t-unstable for all t > 6

11 . If q is a quadric cone and C has a cusp

at the singular point of q, it is numerically t-unstable for all t < 6
11 .

Proof. First, consider the case where C contains a conic C ′ meeting the residual
curve in an A7 singularity. Without loss of generality, we assume that the conic is
contained in the plane x3 = 0, the singularity occurs at the point (1, 0, 0, 0), and

the quadric f
x3

contains the line x2 = x3 = 0. By assumption, the tangent space to

q at this point contains this line, and the quadric f
x3

is singular. Now, consider the

1-PS with weights (7, 3,−1,−9). Then µ(q, λ) ≤ 6 and µ(f, λ) ≤ −11. It follows
that

µt((q, f), λ) ≤ −11t+ 6

which is negative when t > 6
11 .

Now, consider the case where q is a quadric cone and C has a cusp at the singular
point of q. Without loss of generality, we may assume that q = x1x3 − x2

2. We
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write a representative for the cubic in coordinates as

f =
∑

a+b+c+d=3

αa,b,c,dx
a
0x
b
1x
c
2x
d
3.

As above, we may assume that the tangent space to the cubic at the cone point of
q is the plane x3 = 0. It follows that α3,0,0,0 = α2,1,0,0 = α2,0,1,0 = 0. Consider the
1-PS with weights (9, 1,−3,−7). Then µ(q, λ) = −6 and µ(f, λ) ≤ 11. It follows
that

µt(([q], [f ]), λ) ≤ 11t− 6

which is negative when t < 6
11 . �

Remark 4.13. We will see in Theorem 6.3 (3) that the minimal orbit of the above
strictly semi-stable curves at t = 6

11 is given by

x2
1 + x0x2 = x2

2x3 + x0x
2
3 = 0.

This curve consists of two components meeting in a separating A7 singularity. One
of the components is a conic. The other is a quartic with a cusp at the vertex of
the cone.

Proposition 4.14. If C contains a double conic component, it is numerically t-
unstable for all t > 2

5 . If q is a quadric cone and f passes through the singular

point of the cone, then it is is numerically t-unstable for all t < 2
5 .

Proof. First, consider the case where C contains a double conic component. With-
out loss of generality, we may assume that the conic is contained in the plane
x0 = 0. Consider the 1-PS with weights (−3, 1, 1, 1). Then µ(q, λ) ≤ 2, and, since
f is divisible by x2

0, we have µ(f, λ) ≤ −5. It follows that

µt((q, f), λ) ≤ −5t+ 2

which is negative when t > 2
5 .

Now, consider the case where q is a quadric cone and f passes through the
singular point. Without loss of generality, we may assume that the singularity
occurs at the point p = (1, 0, 0, 0). Consider the 1-PS with weights (3,−1,−1,−1).
Then, since q is singular at p, µ(q, λ) = −2. Furthermore, since f contains p,
µ(f, λ) ≤ 5, so

µt((q, f), λ) ≤ 5t− 2

which is negative when t < 2
5 . �

Remark 4.15. We will see in Theorem 6.3 (4) that here, the relevant minimal orbit
of strictly semi-stable curves is given by the union of two rulings of a quadric cone
and a double conic:

q(x0, x1, x2) = x0x
2
3 = 0.

Proposition 4.16. If C is a triple conic, then it is numerically t-unstable for all
t > 2

9 . If q is singular, then (q, f) is numerically t-unstable for all t < 2
9 .

Proof. First, consider the case where C is a triple conic. Without loss of generality,
we may assume that f = x3

0. Consider the 1-PS with weights (−3, 1, 1, 1). Then
µ(q, λ) ≤ 2 and µ(f, λ) = −9. Hence

µt((q, f), λ) ≤ −9t+ 2

which is negative when t > 2
9 .
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Now, consider the case where q is singular. Without loss of generality, we may
assume that the singular point is the point p = (1, 0, 0, 0). Consider the 1-PS with
weights (3,−1,−1,−1). Then, since q is singular at p, we have µ(q, λ) = −2 and
µ(f, λ) ≤ 9, so

µt((q, f), λ) ≤ 9t− 2

which is negative when t < 2
9 . �

We now change directions, and establish stability in some cases. First, we recall
a basic result from GIT.

Lemma 4.17. Let X be a scheme (of finite type over an algebraically closed field
k) and let G be a reductive algebraic group (over k) acting on X. Suppose L
is a G-linearized line bundle on X. There is a natural induced action of G on
Xss and an induced linearization on L|Xss so that there is an isomorphism of
categorical quotients X//LG ∼= Xss//L|XssG. Moreover, if X is complete, L is
ample, and Xss 6= ∅, then there exists m,n0 ∈ N such that for all n ≥ n0,
H0(Xss, (L⊗mss )⊗n)G = H0(X, (L⊗m)⊗n)G.

Proof. First we consider the GIT quotients X//LG and Xss//L|XssG. If Xss = ∅,
then the statement of the lemma is vacuous, so we may assume Xss 6= ∅. Then the
injective restriction maps H0(X,L⊗n)G → H0(Xss, L|⊗nXss)G make it clear that any
x ∈ Xss is semi-stable for the G-linearization of L|Xss . Thus the semi-stable loci
agree. Since the G-action on Xss is induced from that on X, one concludes there
is an isomorphism X//LG ∼= Xss//L|XssG of the categorical quotients.

Now let us consider the spaces of global sections

H0(Xss, (L⊗mss )⊗n)G and H0(X, (L⊗m)⊗n)G.

We are now assuming that X is complete, L is ample and Xss 6= ∅. First, note
that there is a surjection π : Xss → X//LG. Moreover, we have a line bundle O(1)
on X//LG such that (up to rescaling L) we have π∗O(1) = Lss. By construction of
Proj, and using the assumption that X is complete and L is ample, so that X//LG =
ProjR(X,L)G, we get H0(X//LG,O(n)) = H0(X,L⊗n)G (for n � 0). Finally, by
construction, H0(Xss, L⊗nss )G = H0(X//LG,O(n)) completing the proof. �

We use this lemma in the following.

Lemma 4.18. If 0 < t < 2
9 , then (q, f) is t-(semi)stable if and only if q is smooth

and f |q is terminally (semi)stable.

Proof. Note that, when 0 < t < 2
9 , the line bundle η + th is ample, so in this

case numerical (semi-)stability is the same as actual (semi-)stability. Let Q be the
smooth quadric defined by x2

0 + x2
1 + x2

2 + x2
3 = 0 and write i : PEQ ↪→ PE for

the inclusion of the fiber of PE over Q. Write G = SL(4) and G′ = SO(4) for the

stabilizer of Q. Consider the quasi-projective variety P̃EQ = G×G′ PEQ, which is
the quotient of G× PEQ by the free action of G′: h(g, x) = (gh−1, hx) for h ∈ G′.
There is a natural identification of the ring of invariants (cf. [Kir09, p.10 Eq. (3)]):

(4.19) R′ :=
⊕
n≥0

H0(PEQ, ni∗(η + th))G
′ ∼=

⊕
n≥0

H0(P̃EQ, n(η + th))G.

Notice that PEQ has Picard rank 1, so i∗(η + th) = O(d) for some d ≥ 0.

Now, observe that P̃EQ is isomorphic to the open set V ⊂ PE parameterizing
pairs (q, f) where q is smooth. To see this, note that G×PEQ admits a G′-invariant
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map to this space sending (g, f) to (g ·Q, g · f). This map induces an isomorphism
on the quotient because the quadric q is uniquely determined by an element of
G/G′.

Finally, note that when t < 2
9 , every numerically t-semi-stable point lies on a

smooth quadric. From the computations above it follows that PEss ⊆ V . Thus, by
virtue of Lemma 4.17,

H0(PE,n(η + th))G ∼= H0(V, n(η + th))G

for these values of t. Hence

PE//tG = Proj
⊕
n≥0

H0(PE,n(η + th))G = Proj
⊕
n≥0

H0(V, n(η + th))G

= Proj
⊕
n≥0

H0(PEQ,O(n))G
′

= PEQ//G′.

�

5. Quotients of the Hilbert Scheme

A standard approach to constructing birational models of Mg is to consider the
pluricanonical image of a curve as a point in a Chow variety or Hilbert scheme.
One can then construct the GIT quotient of this Chow variety or Hilbert scheme
by the group of automorphisms of the ambient projective space. This approach
can be found, for example, in both Mumford’s and Gieseker’s constructions of Mg

as an irreducible projective variety (see [Mum77], [Gie82]). It is also the method
by which Schubert [Sch91] constructed the moduli space of pseudostable curves

M
ps

g , and Hassett and Hyeon [HH08] constructed the first flip in the Hassett–Keel
program. In our situation, we will consider the GIT quotients Hilbm4,1 //Λm SL(4).
Recall that points of Hilbm4,1 are called m-th Hilbert points.

5.1. Numerical criterion for finite Hilbert stability. A criterion for stability
of Hilbert points was worked out in [HHL10]. We briefly review their results.

Let X ⊂ PN be a variety with Hilbert polynomial P (m). We will write km =(
N+m
m

)
−P (m). For any v ∈ RN+1, we define an ordering<v on the set of monomials

in N + 1 variables as follows:
xa <v x

b if

(1) deg xa < deg xb;
(2) deg xa = deg xb and v.a < v.b;
(3) deg xa = deg xb, v.a = v.b, and xa <Lex x

b in the lexicographic order.

In particular, given a 1-PS λ with weight vector α = (α0, α1, . . . , αN ), the monomial
order <λ is the lexicographic order associated to the weight α. For each polynomial
f , let in<λ(f) denote the largest term of f with respect to <λ. For an ideal I, we
define in<λ(I) = 〈in<λ(f)|f ∈ I〉.

Proposition 5.1 ([HHL10]). A point I ∈ Hilbm4,1 ⊂ G(km, nm) is semi-stable if
and only if, for every 1-PS λ, we have∑

xa∈in<λ (I)

wtλ(xa) ≥ 0

where the left-hand sum is over the monomials xa of degree m in in<λ(I).
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Note that when km = 1, this criterion coincides with the criterion for hypersur-
faces described in §4.

Proposition 5.2. If I ∈ Hilbm4,1 is not the mth Hilbert point of a (2, 3)-complete
intersection, then it is not m-Hilbert semi-stable for any m ≥ 2. Similarly, if
X ∈ Chow4,1 is not a complete intersection, then it is not Chow-semi-stable.

Proof. Let I ∈ Hilbm4,1 ⊂ G(km, nm) be a vector space. We note that there is a
quadric q and a cubic f , not divisible by q, such that I contains all monomials of
the form qxa and fxb, where xa is a monomial of degree m−2 and xb is a monomial
of degree m− 3. Indeed, this condition is closed in G(km, nm), so it is satisfied by
every element of Hilbm4,1. If q and f do not share a common linear factor, then I is

necessarily the mth Hilbert point of the intersection q = f = 0.
Assume that q and f share a common linear factor. We may choose coordinates

such that q = x0x1, and f is divisible by x0. We may further assume that f
has a nonzero x0x

2
3 term. Now, consider the 1-PS λ with weights (−3, 1, 1, 1).

By definition, I contains all of the monomials of the form x0x1x
a, where xa is a

monomial of degree m − 2, and of the form x0x
2
3x
b, where xb is a monomial of

degree m− 3. The number of such monomials is(
m+ 1

3

)
+

(
m

3

)
−
(
m− 1

3

)
=

1

6
(m− 1)(m2 + 4m− 6)

and the total weight of these monomials is

−2

(
m+ 1

3

)
−
(
m

3

)
= −1

2
m2(m− 1).

It follows that ∑
xa∈in<λ (I)

wtλ(xa)

≤ m
[(
m+ 3

3

)
− (6m− 3)− 1

6
(m− 1)(m2 + 4m− 6)

]
− 1

2
m2(m− 1)

=
1

2
m(m− 2)(m− 3)− 1

2
m2(m− 1) = −m(2m− 3).

Since this is negative for all m ≥ 2, we see that I is not m-Hilbert semi-stable for
these same m. We obtain the analogous result for the Chow variety by noting that

limm→∞
−m(2m−3)

m2 < 0. �

We would like to compare the numerical criterion for points in the Hilbert scheme
to the numerical criterion for points on PE. To this end, we have the following:

Proposition 5.3. Suppose y ∈ Hilb4,1 corresponds to a (2, 3)-complete intersection
C ⊆ P3. Denote also by y the corresponding point in PE. There exists a positive
constant c ∈ Q such that for any 1-parameter subgroup λ, we have µ

2
3 (y, λ) ≥

cµψ
∗
∞Λ∞(y, λ).

Proof. This follows directly from Benoist [Ben11, Prop. 4.3] and Remark 1.10. �
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6. Quotients of the Rojas–Vainsencher resolution

In this section we complete the arguments needed in Section 4 (esp. for Theo-
rem 6.3) to handle GIT for non-ample bundles on PE. The main point is to use
the results on Hilbert stability of the previous section together with the Rojas–
Vainsencher resolution W of the rational map PE 99K Hilb4,1 (see §1.4):

W

π1

}}

π2

##
PE // Hilb4,1

.

6.1. Study of GIT stability on W . Generally speaking, the key to understanding
GIT quotients for non-ample bundles is to relate them to quotients of birational
models with (semi)ample linearizations. In our situation, we consider the birational
model W of PE with linearizations of the form

απ∗1η + βπ∗2(ψ∗∞Λ∞).

Note that for α, β ≥ 0, these linearizations are semiample on W .

Notation 6.1. Set L(t) := η+ th (on PE) and Λ := cψ∗∞Λ∞ (on Hilb4,1), where c
is the constant in Proposition 5.3. Let M(t) = απ∗1L(0) + βπ∗2Λ (on W ), where α
and β are such that L(t) = αL(0) + βL( 2

3 ) (N.B. rank Pic(PE) = 2). We will write
W ss(t) for the semistable locus on W with respect to the linearization M(t), and
PEnss(t) for the numerically semistable locus with respect to L(t).

We start by making the following observations on the behavior of GIT on W .

Proposition 6.2. W ss(t) ⊆ π−1
1 (PEnss(t)).

Proof. First, suppose that y ∈ W is in the exceptional locus of the map π1. Then
π1(y) lies in the locus of pairs (q, f) such that q and f share a common linear factor.
Similarly, π2(y) is not a complete intersection of a quadric and a cubic. It follows
from Proposition 4.6 that, for the 1-PS λ with weights (−3, 1, 1, 1), we have

µπ
∗
1L(0)(y, λ) < 0

µπ
∗
1L( 2

3 )(y, λ) < 0.

Moreover, it follows from Proposition 5.2 that

µπ
∗
2Λ(y, λ) < 0.

By the linearity of the Hilbert–Mumford index, y is numerically unstable for all the
line bundles in question. It follows that Wnss(t) is contained in the ample locus of
M(t), and thus Wnss(t) = W ss(t).

Now suppose that y /∈ π−1
1 (PEnss(t)) is not in the exceptional locus of the map

π1. By Proposition 5.3 together with the linearity and functoriality of the Hilbert–
Mumford index, there is a one-parameter subgroup λ such that

0 > µαL(0)+βL( 2
3 )(y, λ) ≥ µαπ

∗
1L(0)+βπ∗2Λ(y, λ).

It follows that y /∈W ss(t). �
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A consequence of Proposition 6.2 is that, for every t in the range 0 < t ≤ 2
3 ,

W ss(t) = Wnss(t) is contained in the locus on which π2 restricts to an isomorphism.
It follows that every invariant section of M(t) has affine non-vanishing locus, hence
the usual results about GIT hold for the linearization M(t) despite the fact that it
is only semi-ample, rather than ample. As another consequence, we may think of
points in W ss(t) as (2, 3)-complete intersections. Combining Proposition 6.2 with
the results of §4.2, we can identify many t-unstable points in W . It remains to
show that each curve that has not been explicitly destabilized thus far is in fact
t-semi-stable. We will prove this in Theorem 6.3. This type of argument is related
in spirit to the potential stability argument used by Gieseker and Mumford for the
GIT construction of Mg (e.g. see [HM98, §4.C]).

Finally, we recall briefly the notion of the basin of attraction from [HL10b, Def. 4].
If the stabilizer of a curve C ′ contains a 1-PS λ, then the basin of attraction (of C ′

with respect to λ) is defined to be

Aλ(C ′) := {C | C specializes to C ′ under λ}.
If C ′ is strictly semi-stable with respect to λ, meaning that µ(C ′, λ) = 0, then C ′ is
semi-stable if and only if C is semi-stable for every (equivalently, any) C ∈ Aλ(C ′)
(see [HH08, Lem. 4.3]).

We are now ready to prove the following key result describing the stability on the
space W which interpolates between PE and Hilb4,1. The main advantages here
are: (1) on W we are in a standard GIT set-up (i.e. (semi-)ample linearizations,
as opposed to the situation on PE//tSL(4) for t > 1

2 ), and (2) the natural spaces
Hilbm4,1 //SL(4) are then easily described using W//tSL(4).

Theorem 6.3. Let C ∈ W ss(t). Then C is a complete intersection of a quadric
and a cubic in P3, and:

(1) C ∈W (s)s( 2
3 ) if and only if it is Chow (semi-)stable.

(2) C ∈ W (s)s(t) for all t ∈ ( 6
11 ,

2
3 ) if and only if it is Chow (semi-)stable, but

not a ribbon, an elliptic triborough, or a curve on a quadric cone with a
tacnode at the vertex of the cone. The closed orbits of strictly t-semi-stable
points correspond to the maximally degenerate curve with A5 singularities
(i.e. C2A5

in the notation of §3) and the unions of three conics meeting in
two D4 singularities (see Remark 3.7 (1) and (4)).

(3) C ∈W ss(t) for all t ∈ ( 2
5 ,

6
11 ) if and only if

(a) C ∈ W ss(t) for t ∈ ( 6
11 ,

2
3 ) and is not an irreducible cuspidal curve

with hyperelliptic normalization, or
(b) C contains a conic that meets the residual curve in a singularity of

type A7, but otherwise satisfies condition (2) of Theorem 3.1.
The closed orbits of strictly t-semi-stable points are the same as for t ∈
( 6

11 ,
2
3 ).

(4) C ∈W ss(t) for t ∈ ( 2
9 ,

2
5 ) if and only if

(a) C ∈ W ss(t) for t ∈ ( 2
5 ,

6
11 ) and is not an irreducible nodal curve with

hyperelliptic normalization, or
(b) C has a triple-point singularity whose tangent cone is the union of a

double conic and a conic meeting in two points, but otherwise satisfies
condition (2) of Theorem 3.1.

The closed orbits of strictly t-semi-stable points correspond to the maximally
degenerate curve with A5 singularities, the unions of three conics meeting in
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two D4 singularities, and the unions of a conic and a double conic meeting
at two points (see Remark 3.7 (1), (3) and (4)).

(5) C ∈W (s)s(t) for t ∈ (0, 2
9 ) if and only if it is contained in a smooth quadric

and it is terminally (semi-)stable.

Proof. As already mentioned, the strategy of the proof is to show that every curve
that has not been explicitly destabilized by using the results of §4.2 and Proposition
6.2 is in fact t-semi-stable. We start by proving items (1) and (5), which identify
the quotients corresponding to the two end chambers of the VGIT on W with
the two GIT quotients discussed in §3. We then identify GIT walls using t-semi-
stable curves with positive dimensional stabilizer. We use the basin of attraction
to determine t-semi-stable curves at each wall. By general variation of GIT, each
such curve that is contained in a smooth quadric is in fact t-semi-stable for all
smaller values of t. In this way we identify the majority of t-semi-stable curves.
To establish the t-semi-stability of the remaining curves, we use another basin of
attraction argument.

Proof of (1). The isomorphism PE// 2
3
SL(4) ∼= Chow4,1 //SL(4) was established in

[CMJL12]. Since M( 2
3 ) = Λ is semi-ample (it is the pull-back of the natural polar-

ization O(1) on Chow4,1), one obtains the identification ProjR
(
W,M( 2

3 )
)SL(4)

=

ProjR(Chow4,1,O(1))SL(4). In fact, although Λ is only semi-ample, we have shown
thatW ss(M(t)) = Wnss(M(t)), and so one may also conclude that the (categorical)
GIT quotients agree: W//M( 2

3 )SL(4) ∼= Chow4,1 //SL(4). (QED (1))

Proof of (5). Suppose now that 0 < t < 2
9 (in particular, L(t) is ample on PE) and

note that by Prop. 6.2 and Lem. 4.18, W ss(t) ⊆ π−1
1 (PEnss(t)) = π−1

1 (PEss(t)) is
contained in the open set V consisting of pairs (q, f) where q is smooth. Since π1

restricts to an isomorphism on the open set V and M(t)|V = L(t)|V , (5) follows
from Lemmas 4.17 and 4.18. (QED (5))

We now turn to the intermediate chambers. By general variation of GIT, we
know that if C ∈W ss(ε)∩W ss( 2

3 ), then C ∈W ss(t) for all t in the range ε < t < 2
3 .

On the other hand, suppose that C is neither Chow semi-stable nor terminally semi-
stable. It follows that one of the following must be true:

(1) C contains a line L such that L ∩ C\L is a singular point of the residual
curve;

(2) C has a singularity of multiplicity greater than three;
(3) C is contained in a quadric of rank 1 or 2;
(4) C is contained in a quadric cone and has a singularity of type other than

A2, A3 or A4 at the singular point of the cone;
(5) C is contained in a quadric cone and has a separating A7 singularity, or
(6) C is contained in a quadric cone and has a triple-point singularity of type

other than D4.

By Proposition 6.2 and the results of §4.2, any of the first four possibilities imply
that C /∈ W ss(t) for any t < 2

3 . The fifth case can only be t-semi-stable for

t ∈ [ 2
9 ,

6
11 ]. In the last case, C specializes to its “tangent cone” under the one-

parameter subgroup described in §2.2. By the proof of Proposition 4.11, this one-
parameter subgroup has weight zero on C, and hence if C is t-semi-stable then
its tangent cone is t-semi-stable as well. Since the singularity is not of type D4,
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the tangent cone is non-reduced. It cannot be a triple conic unless t = 2
9 , because

by Proposition 4.16 a triple conic and a curve on a singular quadric cannot be
simultaneously semi-stable except at this critical value. It therefore must be the
union of a conic and a double conic on a quadric cone, which can only be t-semi-
stable for t ∈ [ 2

9 ,
2
5 ].

Having destabilized the necessary curves, we now turn our attention to showing
that various curves are (semi-)stable for particular values of t.

Proof of (2). We consider first the t-interval ( 6
11 ,

2
3 ). By the above, every t-semi-

stable point for t ∈ ( 6
11 ,

2
3 ) is either terminally semi-stable or Chow semi-stable.

The only terminally polystable curves that are not Chow semi-stable are the triple
conic, the double conics, and the curves with separating A7 singularities (§3.1,
§3.2), and none of these can be t-semi-stable for t > 6

11 (§4.2). It follows that

W ss(t) ⊂ W ss( 2
3 ) for all t in this interval. As a consequence, since a wall t0 of

this GIT chamber is characterized by W ss(t0) *W ss( 2
3 ), the wall must lie outside

the open t-interval ( 6
11 ,

2
3 ). By general variation of GIT, we therefore have that

W s( 2
3 ) ⊂ W ss(t) for t in this interval, and W ss( 2

3 ) ∩ W ss(ε) ⊂ W ss(t) for all

0 < ε < t (and in particular for 0 < ε < 2
9 ) as well.

Thus it remains to determine the t-semi-stability of the remaining strictly Chow
semi-stable points that are not terminally semi-stable. These all lie on the quadric
cone. Considering the possibilities from Theorem 3.1, we see that the only such
curves that have not already been destabilized are the curves on the quadric cone
with Ak (k ≥ 5) singularities (that do not have an An (n ≥ 3) singularity at the
vertex of the cone) and the curves on the quadric cone with D4 singularities.

Suppose first that C = V (q, f) is a 2
3 -semi-stable curve on the quadric cone that

has an Ak (k ≥ 5) singularity at a smooth point of the cone, but does not have
an An (n ≥ 3) singularity at the vertex of the cone. We argue by contradiction
that C is also t-semi-stable. Suppose that λ is a one-parameter subgroup such
that µt((q, f), λ) < 0. By standard facts from variation of GIT, one can assume

that µ
2
3 ((q, f), λ) = 0 (see e.g. [Laz11, §4.1.2 ]). Now let C ′ = V (q′, f ′) be the

specialization of C under λ. Since λ fixes C ′, it follows from the basin of attraction
argument that C ′ is 2

3 -semi-stable as well. The only 2
3 -semi-stable curve in the

orbit closure of C, however, is a curve of the form

C ′ = CA,B = V (x2
2 − x1x3, Ax

3
1 +Bx0x1x2 + x2

0x3),

whose stabilizer in the given coordinates is the C∗ with weights ±(3, 1,−1,−3).
All of the curves that specialize to CA,B under the 1-PS with weights (3, 1,−1,−3)
have an An (n ≥ 3) singularity at the vertex of the cone. Consequently, λ must be
the 1-PS with weights (−3,−1, 1, 3). This gives µ(q′, λ) = 2 and µ(f ′, λ) = −3, so
that µt((q′, f ′), λ) > 0 (any other representative of f ′ will have weight ≥ −3). Now
since (q′, f ′) is the limit of (q, f) under λ, we have µt((q, f), λ) = µt((q′, f ′), λ) > 0,
a contradiction.

Similarly, if C has a D4 singularity, then C specializes to its tangent cone under
the one-parameter subgroup described in §2.2, and this one-parameter subgroup
has weight zero on C by Proposition 4.11. Hence C is t-semi-stable if and only
if its tangent cone is t-semi-stable as well. Now, suppose that there is a one-
parameter subgroup λ such that µt((q, f), λ) < 0. As in the previous case, we see
that λ must be contained in the stabilizer of the 2

3 -polystable limit of C, which is
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CD = V (x0x3, x
3
1 + x3

2). The stabilizer of CD is the 2-dimensional torus consisting
of one-parameter subgroups with weights of the form ±(a,−1,−1, 2− a). Since C
specializes to CD under λ and C is not contained in a reducible quadric, we see
that λ has weights of the form (a,−1,−1, 2 − a). But then µ(x0x3, λ) = 2 and
µ(x3

1 + x3
2, λ) = −3, so as above, µt((q, f), λ) > 0, a contradiction. (QED (2))

The proofs of the remaining parts are similar. We include the details for the
convenience of the reader.

Proof of (3). We next consider the t-interval ( 2
5 ,

6
11 ). For t < 6

11 , cuspidal curves
with hyperelliptic normalization can no longer be t-semi-stable, so there must be
a GIT wall at t = 6

11 . This implies that there is a 6
11 -semi-stable curve with

positive dimensional stabilizer that is not t-semi-stable for t = 6
11 + ε. Reviewing

the possibilities, we see that there is only one possible such curve, namely

C ′ = V (x2
1 + x0x2, x

2
2x3 + x0x

2
3),

which has both a separating A7 singularity and a cusp at the vertex of the quadric
cone on which it lies. If C ∈W ss( 6

11 + ε) is not in W ss( 6
11 − ε), then the orbit of C

under the C∗ that stabilizes C ′ must contain C ′ in its closure. It follows that, up
to change of coordinates, C must be of the form:

C = V (x2
1 + x0x2 + αx2

0 + βx0x1, x
2
2x3 + x0x

2
3 + f(x0, x1, x2)),

where α, β are constants and f is a cubic. In other words, C must be contained
in a singular quadric and have a cusp at the vertex. We therefore see that every
( 6

11 + ε)-semi-stable curve that is not of this form is ( 6
11 − ε)-semi-stable as well.

To identify the remaining 6
11 -semi-stable curves, we use the basin of attraction

of C ′. Namely, since the curve C ′ is 6
11 -semi-stable, we see that every curve in the

basin of attraction of C ′ is also 6
11 -semistable. By Proposition 4.12, we see that

this includes every curve with a separating A7 singularity apart from those that
we have explicitly destabilized already. If such a curve C is contained in a smooth
quadric, then C ∈W ss( 6

11 ) ∩W ss(0), so C ∈W ss(t) for all t ∈ [0, 6
11 ].

It remains to show that the curves contained in a quadric cone with a separating
A7 singularity are in fact ( 6

11 − ε)-semi-stable. So let C = V (q, f) be such a
curve. To show C is t-semi-stable, we argue as above, noting that if λ is a 1-PS
such that µt((q, f), λ) < 0, then λ must be contained in the stabilizer of the 6

11 -
polystable limit of this curve, which is the curve C ′ above. The stabilizer of C ′ is
a one-dimensional torus, so this determines the 1-PS λ uniquely. Indeed, in these
coordinates, λ must be the 1-PS with weights (7, 3,−1,−9). Then µ(x2

1+x0x2, λ) =
6 and µ(x2

2x3 + x0x
2
3, λ) = −11, so as above µt((q, f), λ) > 0, a contradiction.

To complete this part of the proof, we note that by the above we obtain the
inclusion W ss(t) ⊂ W ss( 6

11 − ε) for all t ∈ ( 2
5 ,

6
11 ), and hence this interval is

contained in a single GIT chamber. (QED (3))

Proof of (4). By arguments nearly identical to the previous case, we identify a
GIT wall at t = 2

5 corresponding to the curve C ′ = V (x0x2 − x2
1, x1x

2
3), which

is the union of a double conic and two rulings of a quadric cone. As before, if
C ∈W ss( 2

5 + ε) is not in W ss( 2
5 − ε), then the orbit of C under the stabilizer of C ′

must contain C ′ in its closure. It follows that, up to change of coordinates, C must
be of the form C = V (q(x0, x1, x2), f(x0, x1, x2, x3)), where f is a cubic containing
the vertex (0, 0, 0, 1). In other words, C must be contained in a singular quadric
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and have a node at the vertex. We therefore see that every ( 2
5 +ε)-semi-stable curve

that is not of this form is ( 2
5 − ε)-semi-stable as well.

As in the previous case, we see that every curve with a double conic component,
apart from those we have explicitly destabilized, is 2

5 -semi-stable, as such curves
are in the basin of attraction of C ′. Specifically, if a curve C contains a double
conic component that is contained in the plane x0 = 0, then C specializes to C ′

under the 1-PS with weights (−3, 1, 1, 1), which is contained in the stabilizer of C ′.
Furthermore, if such a curve is contained in a smooth quadric then it is contained
in W ss( 2

5 ) ∩W ss(0), and hence it is t-semi-stable for all t ≤ 2
5 .

It remains to show that the double conics contained in a quadric cone are ( 2
5−ε)-

semi-stable as well. For this, we argue as above, noting that if λ is a 1-PS such
that µt((q, f), λ) < 0 for such a curve C = V (q, f), then λ must be contained in the
stabilizer of the 2

5 -polystable limit of this curve, which is the curve C ′ above. The
stabilizer of C ′ is the two-dimensional torus consisting of one parameter subgroups
with weights ±(a, 1, 2 − a,−3). All the curves that specialize to C under a 1-PS
with weights (−a,−1, a− 2, 3) pass through the vertex of the cone, so λ must have
weights (a, 1, 2− a,−3). But then µ(x0x2 − x2

1, λ) = 2 and µ(x1x
2
3, λ) = −5, so as

above, µt((q, f), λ) > 0, a contradiction. The fact that the entire t-interval ( 2
9 ,

2
5 )

is contained in a GIT chamber follows exactly as above. (QED (4)). �

Remark 6.4. Note that in the theorem, points that are strictly semi-stable on a wall
may become stable in the adjacent chamber. For instance, for t = 2

3 , the ribbon is
semi-stable, and the strictly semi-stable points corresponding to curves with A8, A9

singularities degenerate to this curve. For 6
11 < t < 2

3 , the ribbon is unstable, but
the curves with A8, A9 singularities become stable (not just semi-stable).

Remark 6.5. The argument above also determines semi-stability conditions at the
GIT walls.

(1) At t = 6
11 , both irreducible cuspidal curves with hyperelliptic normalization

and curves with a separating A7 singularity are strictly semi-stable. The
orbit closure of either type of curve contains the point

x2
1 + x0x2 = x2

2x3 + x0x
2
3 = 0.

(2) At t = 2
5 , both irreducible nodal curves with hyperelliptic normalization

and double conics are strictly semi-stable. The orbit closure of either type
of curve contains the union of a double conic and two rulings on the quadric
cone, given by

q(x0, x1, x2) = x0x
2
3 = 0.

(3) At t = 2
9 , both curves contained in a quadric cone and triple conics are

strictly semi-stable. The orbit closure of either type of curve contains the
triple conic on a quadric cone.

6.2. Comparing the GIT quotients. We set

W//tSL(4) := W//M(t)SL(4) = ProjR(W,M(t))SL(4),

where recall W//M(t)SL(4) is the categorical quotient of the semi-stable locus, and
the equality on the right holds because Wnss(t) is contained in the ample locus of
M(t).

As discussed in Section 4, the GIT quotient PE//tSL(4) makes sense as a cate-
gorical quotient for all t. However, for non-ample linearizations (i.e. t ≥ 1

2 ), it is
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not a priori clear how to describe it in terms of the numerically (semi-)stable points
(e.g. Rem. 4.4). Here we note that Proposition 6.2 and Theorem 6.3 allows us to
interpret our numerical results from the previous section as honest GIT results on
the resolution W , and then the expected properties of PE//tSL(4) follow (as well
as the connection between numerical stability and stability).

Corollary 6.6. For t ∈ [0, 2
3 ], PE//L(t)SL(4) = W//M(t)SL(4) and for both spaces,

numerical (semi-)stablility agrees with Mumford (semi-)stability. Moreover, the
ring of invariant sections R(PE,L(t))SL(4) is finitely generated and

PE//L(t)SL(4) = ProjR(PE,L(t))SL(4).

Proof. The boundary cases t = 0 and t = 2
3 have been proven already. For

t ∈ (0, 2
3 ), W ss(M(t)) ⊆ π−1

1 (PEnss(L(t))) by Prop 6.2. On the other hand, in
Theorem 6.3 we showed that every curve that is not explicitly destabilized in §4.2
is in fact semi-stable in W , so π−1

1 (PEnss(L(t))) ⊆ W ss(M(t)). By Prop. 4.6,
we see that π−1

1 (PEnss(L(t))) is contained in the locus where π1 restricts to an
isomorphism identifying PEnss(L(t)) and π−1

1 (PEnss(L(t))). Thus the categorical
quotient of PEnss(L(t)) agrees with the categorical quotient W//M(t)SL(4), which

equals ProjR(M(t))SL(4).
Now consider the injective restriction maps:

H0(W,M(t))SL(4) → H0(W ss,M(t)|W ss)SL(4)

H0(PE,L(t))SL(4) → H0(PEnss, L(t)|PEnss)SL(4).

The map on the top is in fact surjective (up to possibly taking a higher tensor
power of M(t)) by Lemma 4.17. The map on the bottom is surjective as well.
This follows for t ≤ 2

9 by Lemma 4.17, and for 2
9 < t ≤ 2

3 since the complement
of PEnss has codimension at least two. Since PEnss is identified with W ss, and
M(t)|W ss ∼= L(t)|PEnss , we get the equality we need.

It follows immediately that R(PE,L(t))SL(4) is finitely generated, and gives the
same projective variety as R(W,M(t))SL(4). It is also elementary to check from this
equality of invariant sections, that Mumford stability and numerical stability then
agree on PE, since this holds on W . Thus we have

PE//L(t)SL(4) = W//M(t)SL(4) = ProjR(M(t))SL(4) = ProjR(L(t))SL(4).

�

We now compare the GIT quotients of W to those of the Hilbert scheme.

Theorem 6.7. We have the following isomorphisms of GIT quotients:

(1) Chow4,1 //SL(4) ∼= W//M( 2
3 )SL(4).

(2) Hilbm4,1 //SL(4) ∼= W//M(t)SL(4), where t = m−2
m+1 for 2 ≤ m ≤ 4 and t =

2(m−2)2

3m2−9m+8 ∀m ≥ 5.

Proof. (1) was established in the proof of Theorem 6.3. (2) Let U ⊂ PE be the
open set parameterizing complete intersections (see Rem. 1.4) and Um ⊂ Hilbm4,1
be the corresponding open subset of Hilbm4,1. By Proposition 5.2, Hilbm,ss4,1 ⊂ Um,

hence Hilbm4,1 //ΛmSL(4) ∼= Um//Λm|UmSL(4) by Lemma 4.17. The rational map
ϕm : PE 99K Hilbm4,1 restricts to an isomorphism ϕm|U : U → Um, and ϕm|∗UΛm =
L(t)|U , where t is given by the formula above. It follows from Lem. 4.17 and Cor. 6.6
that Hilbm4,1 //SL(4) ∼= Um//Λm|UmSL(4) ∼= U//L(t)|USL(4) ∼= PE//tSL(4). �
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7. Hassett–Keel Program

So far, we have described the GIT quotients PE//tSL(4) parameterizing (2, 3)-
complete intersections in P3, as well as the birational transformations among them
as the linearization varies. To complete the proof of the Main Theorem stated in
the introduction, we only need to relate these GIT quotients to the Hassett–Keel
spaces M4(α). In fact, by [CMJL12] and [Fed12], this is already known for the
extremal values of the slope t (see (3.4) and (3.8)). Now, using the GIT computation
of the previous sections, we will obtain in Theorem 7.1 the relationship for the
intermediate cases.

To prove the theorem, we will use some elementary properties of birational con-
tractions (e.g. [HK00, §1]). Let f : X 99K Y be a birational map between normal
projective varieties with X Q-factorial. Let (π1, π2) : W → X × Y be a resolution
of f , with W projective (and π1 birational). We call f a birational contraction
if every π1-exceptional divisor is also a π2-exceptional divisor. In this case, for
a Q-Cartier divisor D on Y , we define f∗D to be (π1)∗(π

∗
2D) and one can check

that H0(Y,D) = H0(X, f∗D). These definitions are independent of the choice of
resolution.

Theorem 7.1. Each of the log minimal models M4(α) for α ≤ 5
9 is isomorphic to

one of the GIT quotients constructed above. Namely, we have

M4(α) ∼= PE//tSL(4)

where t = 34α−16
33α−14 ∀α ∈ [ 8

17 ,
5
9 ].

Proof. We argue similarly to the case α = 5
9 , which is Theorem 3.4 in [CMJL12].

First, by the description of the GIT stability, we get that the natural map

ϕ : M4 99K PE//tSL(4)

is a birational contraction for all t ∈
(
0, 2

3

]
. We then write

ϕ∗(4sη + 4h) = aλ− b0δ0 − b1δ1 − b2δ2.

(using s = 1
t and the scalar 4 to make the formulas more attractive). The computa-

tions in §1.2.1 tell us that a = 34s−33 and b0 = 4s−4. To compute the coefficients
b1 and b2, we proceed exactly as in [CMJL12]. In particular, let Z ⊂ M4 be the
curve obtained by gluing a fixed non-hyperelliptic curve C of genus 3 to a varying
elliptic tail. By the results of §1.3 of [CMJL12], the map ϕ is regular and constant
along Z, so b1 = 14s − 15. Specifically, we see that the image of Z is the point
corresponding to the cuspidal curve with normalization C, which is t-stable for all
t ∈ (0, 2

3 ]. Similarly, we see that if j : M2,1 →M4 is the standard gluing map, then
j∗ϕ∗(4sη+ 4h) is supported along the union of δ1 and the Weierstrass divisor, and
hence b2 = 18s− 21. In short, we obtain

ϕ∗(4sη + 4h) = (34s− 33)λ− (4s− 4)δ0 − (14s− 15)δ1 − (18s− 21)δ2.

Now, since δ1 and δ2 are ϕ-exceptional and t ≤ 2
3 <

14
17 , we have

H0(M4, nϕ
∗(4sη + 4h))

∼= H0(M4, nϕ
∗(4sη + 4h) + (10s− 11)δ1 + (14s− 17)δ2))

= H0(M4, n((34s− 33)λ− (4s− 4)(δ0 + δ1 + δ2))).
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Thus, for s = 33α−14
34α−16 ,

PE//tSL(4) = Proj
⊕
n

H0(PE//tSL(4), n(4sη + 4h))

= Proj
⊕
n

H0(M4, nϕ
∗(4sη + 4h))

∼= Proj
⊕
n

H0
(
M4, n

(
KM4

+ αδ
))

= M4 (α) .

�
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