Chapter 11

Uniform Continuity

We saw in the exercises that there are some functions that are badly discontinuous,
such as the characteristic function of the rationals on the reals:

ﬂ@:{lxe@

0 otherwise.

When we think of continuous functions, we tend to think of the usual functions
from precalculus and calculus — polynomials, trigonometric functions, exponential
functions, and so forth. These are continuous, yet somehow seem to be more than
just meeting the definition of continuity.

By Theorem 10.1 we know that f: R — R is continuous on a set S C dom(f) if
and only if

for each a € S and € > 0 there is a 6 > 0 so that if z € dom(f)
and |z —a| < 6 then |f(z) — f(a)| <e.

From this definition we see that the choice of § depends both on the point a € S
and on the particular € > 0.

As an example, consider the function f(z) = 1/2% on the set (0, +00). We know
that f is continuous on this interval. Let a > 0 and € > 0. Now, we will need to show
that |f(x) — f(a)| < € for |x — a sufficiently small.

1 1 a®—a? -
) = ) = 5 - 5 = T = e
5a

If |z —a| < £, then £ < |z| < 2 and |z + a| < 2. Thus, if [z — a| < £, then

la—z-% 10|z —q

(%)21,2 - a3

Thus if we let § = min{§, %}, then

|z — a| < 0 implies that |f(x) — f(a)| < e.
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166 CHAPTER 11. UNIFORM CONTINUITY

Therefore, we have now shown that the conditions of Theorem 10.1 hold for f on
(0, +00). Note that 6 depends on both € and on a. Even if we fix €, § gets small when
a is small. This shows that our choice of § depends on the value of a as well as ¢,
though this might seem to be because of sloppy estimates. However, we can see that
the value of § must depend on a as well as e.

It turns out that it is very useful to know when the ¢ in this condition can be
chosen to depend only on € > 0 and the set S, so that 0 does not depend on the
particular point a.

Definition 11.1 Let f: R — R be defined on S CR. Then f s uniformly continu-
ous on S if

for each € > 0 there is a § > 0 so that if z,y € S and |z —y| <
then [ f(x) — f(y)] <e.

We will say that f is uniformly continuous if it is uniformly continuous on dom(f).

Note that this says that if f is uniformly continuous on S then for any given ¢ > 0
the choice of § > 0 works for the entire set S.

Note that if a function is uniformly continuous on S, then it is continuous for
every point in S. By its very definition it makes no sense to talk about a function
being uniformly continuous at a point.

Now, we can show that the function f(x) = 1/2? is uniformly continuous on any
set of the form [a, +00). To do this we will have to find a ¢ that works for a given e
at every point in [a, +00). We have

(y —2)(y + )
$2y2 :

flz) = fly) =

x
We want to see if we can prove that the term 2—3 is bounded by some number M
7Y

on [a,+00). Once we have done that we can take 6 = ¢/M. Now,

phy L1 1 12

l'2y2 113'2'3/ Zli"y2 — a3 a3 0,3.

Thus, we will take

Question: How would we show that the function g(z) = 22 is uniformly continuous
on [—5,5]7

Theorem 11.1 If f is continuous on a closed interval |a,b], then f is uniformly
continuous on |a, b].
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PROOF: Assume that f is not uniformly continuous on [a, b]. Then there is an € > 0
such that for each > 0 the implication

“|lz —y| <6 implies [f(z) — f(y)| < €

fails. Therefore, for each 6 > 0 there exists at least a pair of points x,y € [a,b] such
that |z —y[ < 6 but |f(x) — f(y)| = €

Thus, for each n € N there exist z,,,y, € [a,b] so that |z, — y,| < L but |f(z) —
f(y)| > e. By the Bolzano-Weierstrauss Theorem (6.14) there exists a subsequence
{zn, } C {z,} that converges. Moreover, if z¢ = limy_,« @p,, then zy € [a,b]. Clearly
we will also have to have that xo = limy_, yn,. Since f is continuous at z, we have

SO

k—o0

Since | f(xn, ) — f(yn, )| > € for all k, we have a contradiction. This leads us to conclude
that f is uniformly continuous on [a, b]. i

Note that in view of this theorem the following functions are uniformly continuous
on the indicated sets: z* on [a,b], /7 on [0,a], and cos(z) on [a, b].

Theorem 11.2 [f f is uniformly continuous on A and {x,} is a Cauchy sequence in
A, then {f(x,)} is a Cauchy sequence.

PRrOOF: Let {x,} be a Cauchy sequence in A and let ¢ > 0. Since f is uniformly
continuous on A, thereisa § > 0so thatif z,y € Aand |z—y| < d then |f(z)—f(y)| <
€.

Since {z,} is a Cauchy sequence, there is an N € N so that if m,n > N then
|z = x| < 0. Thus, this implies that if m,n > N then |f(z,) — f(x,)| < €, which
proves that {f(z,)} is a Cauchy sequence.

As an example consider the function f(z) = 1/z* on (0,1). Let x, = 1/n for
n € N. This clearly forms a Cauchy sequence in (0, 1). However, the function takes
the values f(z,) = n* and the sequence {n?} is clearly not a Cauchy sequence. Thus,
f cannot be a uniformly continuous function on (0, 1).

We define a function f to be an extension of f if dom(f) C dom(f) and f(z) =

A~

f(zx) for all x € dom(f).

Theorem 11.3 A real-valued function f on (a,b) is uniformly continuous on (a,b)
if and only if it can be extended to a continuous function f on [a,b].
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168 CHAPTER 11. UNIFORM CONTINUITY

PrOOF: First, suppose that f can be extended to a continuous function f on |a, b].
Then f is uniformly continuous on [a, b] by Theorem 11.1, so clearly f is uniformly
continuous on (a, b).

Now, suppose that f is uniformly continuous on (a,b). We need to define f(a)
and f(b) in such a way that the extension will be continuous. We will show how to
deal with f(a) and the other extension is handled similarly.

Let {x,} be a sequence in (a, b) that converges to a. Since the sequence converges
it must be a Cauchy sequence. Thus, {f(x,)} is also a Cauchy sequence. Therefore,
it converges. Let’s call this Condition A.

Let {z,,} and {y,} be two sequences in (a,b) that both converge to a. Define a
new sequence {u,} by interleaving z,, and y,:

{un}?LOZI = {xh Y1,T2,Y2,23,Y3, - - }

It should be clear that lim, .. u, = a. Thus, lim, . f(u,) exists by Condition A.
Since { f(z,)} and {f(yn)} are both subsequences of { f(u,)} they must converge and
converge to the same limit. Thus,

lim f(z,) = lim f(yn).
Let’s call this Condition B.
Thus, define f(a) = lim, . f(s,) for any sequence {x,} in (a,b) converging to a.

Condition A guarantees that this limit exists, and Condition B guarantees that this
limit is well-defined and unique. This implies that f is continuous at a. |

As an example consider the function f(z) = sin(z)/x for x # 0. We can extend
this function on R by
p ST f g £ ()
T) = r
/(@) {1 iftex=0
The fact that f is continuous at x = 0 implies that f is uniformly continuous on (a,0)
and (0,b) for any a < 0 < b. In fact, f is uniformly continuous on R.

Theorem 11.4 Let f be continuous on an interval I. Let I° be the interval obtained
by removing from I any endpoints that happen to be in I. If f is differentiable on I°
and if ' is bounded on I°, then f is uniformly continuous on I.

PROOF: Let M be a bound for f’ on [ so that |f'(z)] < M for all x € I°. Let ¢ > 0
and let § = §;. Consider a,b € I where a < b and |b — a|] < é. By the Mean Value
Theorem there exists « € (a,b) so that

i) = HO=TM)
SO
1f(b) = fla)| = |f' (@) - |b—a] < M|b—a] < M§=e.
Thus, f is uniformly continuous on [. i
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Why is uniform continuity important? One
of the reasons for studying uniform continuity
is its application to the integrability of contin-
uous functions on a closed interval, i.e. proving
that a continuous function on a closed interval
is integrable. To see how this might work with
Riemann sums consider a continuous nonnega-
tive real-values function f defined on [0, 1]. For
ne€Nand k=0,1,2,...,n—1, let

Ek+1

M = ub{f () |2 € [, =)

mi = gb{f () | €[5, T

Then the sum of the areas of the rectangles in
Figure 11.2 equals

n

1 n—1
Un = - Z Mk,n
n k=0
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Figure 11.1: Lower Sums

and the sum of the areas of the rectangles in Figure 11.1 equals

n—1
1
Ln = — E Mikn
n
k=0

The function f is Riemann integrable if the

Figure 11.2: Upper Sums

numbers U,, and L, are close together for large
n, in other words, if

lim (U, — L,,) = 0.

n—~o0

In that case we define

/0 ()

In order to prove that the above limit is 0, we
actually need uniform continuity. Note that

dr = lim U, = lim L,.

n—oo n—oo

n—1

1

T ITT T T I T T ITT T OSUn—Ln=5Z(Mk,n—mk,n)

k=0

for all n. Let € > 0. By our previous theorem,

f is uniformly continuous on [0, 1], so there exists 6 > 0 so that

x,y € [0,1] and |x — y| < 6 imply |f(z) — f(y)| <e.
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170 CHAPTER 11. UNIFORM CONTINUITY

Now, choose an N so that % < 9. If n > N then for i =0,1,2,...,n — 1 we know
that there exist z;,y; € [%,%] satisfying f(x;) = my;, and f(y;) M; .. Since

|z; — yi| < % < % < 9, the above shows that M, —m;, = f(y;) — f(z;) <€, so that

[y

n—1 n—
1
<U,—L,=— M —min
0<U, n;:O( n— M) <

SRS
-
I
o
2
I
)

Which proves the limit as desired.

11.1 Limits of functions

If f is continuous at z = a we are tempted to write lim,_, f(x) = f(a) except that
we have not defined how to find a limit of a function, only limits of sequences. We
need to formalize the concept of a limit of a function at a point.

Since we will be interested in left-hand limits, right-hand limits, ordinary limits
and limits at infinity, we will start with the following definition.

Definition 11.2 Let S C R, and let a be a real number or the symbol co or —oo that
is the limit of some sequence in S, and let L be a real number or the symbol oo or

—o00. We write
lim_f (x)=1L

if f is a function defined on S and fore every sequence {x,} in S with limit a we have
lim,, . f(x,) = L.

This is a slightly different definition than that upon which we will eventually
finalize. It has the advantage that we can continue to use the power of sequences,
about which we know a lot.

Note that from our definition a function f is continuous at a € dom(f) = S if and
only if lim,_,,s f(x) = f(a). Also, note that the limits, when they exist, are unique.
From this we will generate the usual definitions.

Definition 11.3

a) Fora € R and f: R — R we write lim,_,, f(z) = L provided lim,_,,s f(x) = L
for some set S = J\ {a} where J is an open interval containing a. lim,_., f(x)
1s called the two-sided limit of f at a. Note that f does not have to be defined
at a and, even if f is defined at a, the value f(a) does not have to be equal to
the limit. In fact, f(a) = lim,_, f(z) if and only if [ is defined on an open
interval containing a and f is continuous at a.

b) Fora € R and f: R — R we write lim, .+ f(x) = L provided lim, s f(z) = L
for some open interval S = (a,b). lim,_ .+ f(x) is the right hand limit of f at
a. Again, f does not have to be defined at a.
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11.1. LIMITS OF FUNCTIONS 171

c) Fora € R and f: R — R we write lim, .- f(x) = L provided lim,_,s f(z) = L
for some open interval S = (c,a). lim, ., f(x) is the left hand limit of f at a.

d) For a function f: R — R we write lim, ., f(x) = L provided lim,_, s f(x) =
L for some open interval S = (c,00). Likewise we write lim,_,_, f(z) = L
provided lim,_,_ s f(x) = L for some open interval S = (—00,b).

Theorem 11.5 Let fi and fo be functions for which the limits lim,_,,s f1(x) = L4
and lim,_, s fo(x) = Lo exist and are finite. THen

i) lim,_qs(f1 + f2)(x) exists and equals Ly + Lo;
ii) lim,_qs(f1f2)(x) exists and equals Ly Lo;

i) lim,_,.s(f1/f2)(x) exists and equals Ly/Ly provides Ly # 0 and fo(x) # 0 for
xeS.

ProOOF: The hypotheses imply that both f; and f, are defined on S and that a is
the limit of some sequence in S. It is clear that the functions f; + fa, f1f2 and f1/f2
are defined on S, the latter if fo(x) # 0 for x € S.

Let {z,} be a sequence in S with limit a. By our hypotheses we have L; =
lim,, . f1(x,) and Ly = lim,_. fo(z,). By our theorems on convergent sequences
we have that

nh_)ngo(fl + fo)(zn) = nh_)nolo filw,) + nh_)rglo fo(zn) = L1 + Lo,

and
Tim (f1f2)(@a) = [ lim fi(wn)] - [ 1im fa(en)| = LiLa

Thus, condition (b) in the definition holds for f; + fo and fifs, so that (i) and (ii)
hold. Part (iii) holds by a similar argument. i

Theorem 11.6 Let f be a function for which the limit L = lim,_,s f(x) exists and
is finite. If g is a function define on the set {f(x) | x € S} U{L} that is continuous
at L, then lim,_,,s g o f(x) exists and equals g(L).

Example 11.1 Why does g have to be continuous at = L? Consider the following
example. Let

4 x#1

f(x)zl%—:ztsing,:c#() and g(:)s):{_4 e

Now, note that
lim f(x) =1 lin%g(x) =4

z—0
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172 CHAPTER 11. UNIFORM CONTINUITY

but what about lim,_ g(f(z))? Let 2, = 2 for n € N, then

F(zn) 1+2 . (mr) 1 if n is even
Ty) = —sin(— | =

n 2 1+24#1 ifnisodd
Thus,

—4 if nis even

9(f(xn)) = {4 if n is odd

Now, lim,, o 2, = 0 so {x,} converges, but lim,_o g(f(z)) cannot exist.

Theorem 11.7 Let f be a function defined on S C R, let a € R be a real number that
is the limit of some sequence in S, and let L be a real number. Then lim,_.s f(z) = L
if and only if for each € > 0 there exists a § > 0 such that if x € S and |vr —a| < §
then |f(x) — L| <e.

Corollary 11.1 Let f be a function defined on J \ {a} for some open interval J
containing a, and let L be a real number. Then lim, ., f(z) = L if and only if for
each € > 0 there exists a 6 > 0 such that if 0 < |z —a| < 0 then |f(x) — L] < e.

Corollary 11.2 Let f be a function defined on some open interval (a,b), and let L
be a real number. Then lim, .+ f(z) = L if and only if for each € > 0 there ezists a
d >0 such that if a < x < a+0 then |f(x) — L| <e.

Theorem 11.8 Let f be a function defined on J \ {a} for some open interval J
containing a. Then lim,_, f(x) exists if and only if the limits lim,_,+ f(x) and
lim, ., f(z) both exist and are equal, in which case all three limits are equal.
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