

3

Medians

In $\triangle ABC$, let M, N, and P be midpoints of AB, BC, AC.

Medians: CM, AN, BP

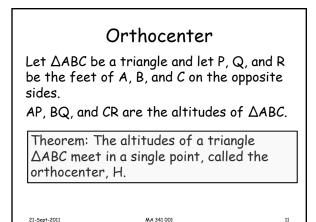
Theorem: In any triangle the three medians meet in a single point, called the centroid.

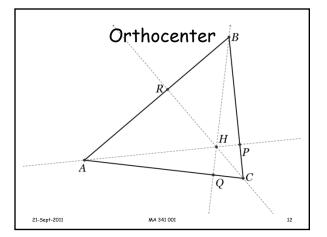
M - midpoint \Rightarrow AM=BM, N - midpoint \Rightarrow BN=CN P - midpoint \Rightarrow AP=CP

10

 $\overline{MB} \cdot \overline{NC} \cdot \overline{PA} = 1$

By Ceva's Theorem they are concurrent. 21-Sept-2011 MA 341 001



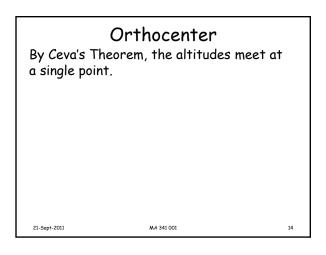


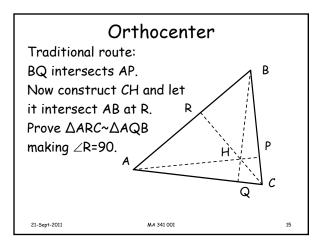
Orthocenter

By AA

 $\Delta BRC \sim \Delta BPA \text{ (a right angle and } \angle B\text{)}$ $\Rightarrow BR/BP=BC/BA$ $\Delta AQB \sim \Delta ARC \text{ (a right angle and } \angle A\text{)}$ $\Rightarrow AQ/AR=AB/AC$ $\Delta CPA \sim \Delta CQB \text{ (a right angle and } \angle C\text{)}$ $\Rightarrow CP/CQ=AC/BC$ $\frac{BR}{BP} \cdot \frac{AQ}{AR} \cdot \frac{CP}{CQ} = \frac{BC}{AB} \cdot \frac{AB}{AC} \cdot \frac{AC}{BC} = 1$ 21-Sept-2011
MA 341001

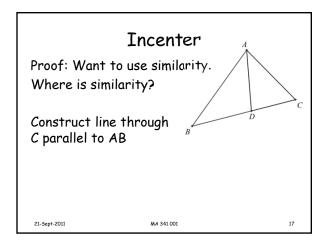
13

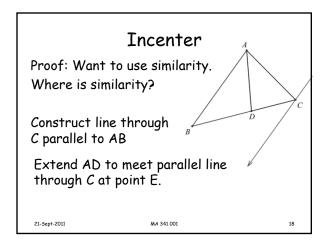


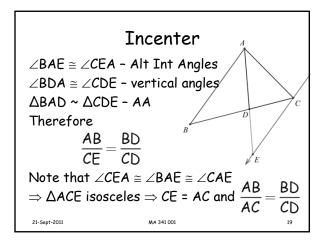


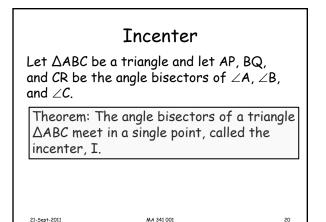
	Incenter	
	a triangle and let . angle bisectors o	
Angle Bisector Theorem: If AD is the angle bisector of $\angle A$ with D on BC, then $\frac{AB}{AC} = \frac{BD}{CD}$		
21-Sept-2011	MA 341 001	16

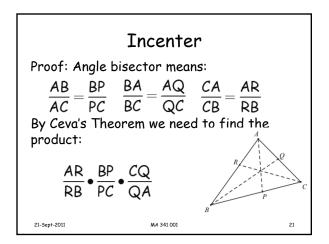
Г

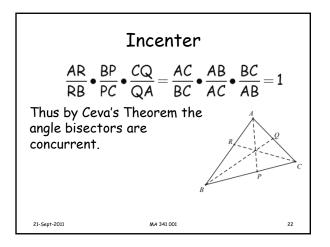


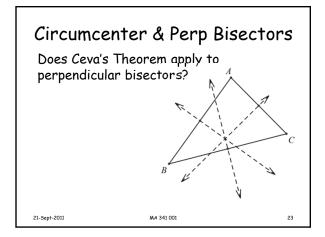


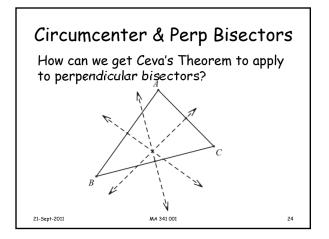


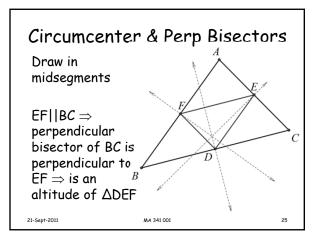


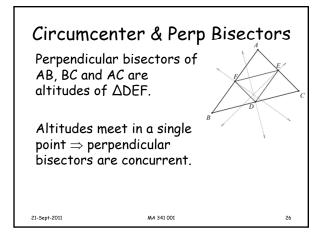






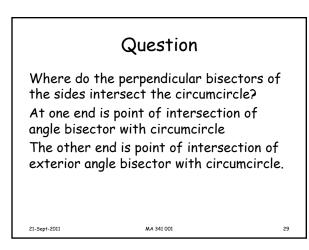


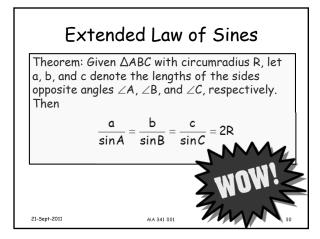


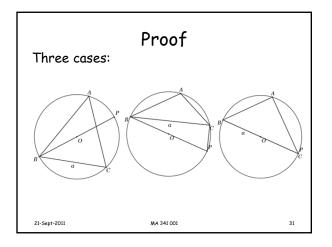


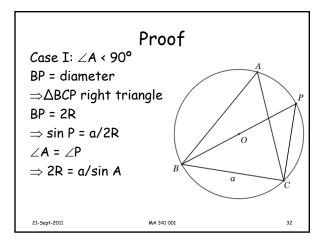
Theorem: Th any three no	here is exactly one circle through on-collinear points.
The center :	the circumcircle = the circumcenter, O. = the circumradius, R.

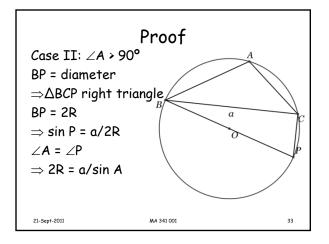
Question	
Where do the perpendicular bisectors of the sides intersect the circumcircle?	
21-Sept-2011 MA 341 001 28	

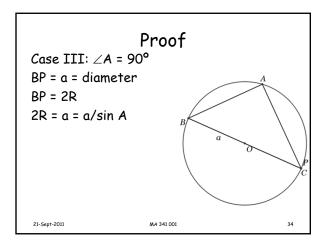


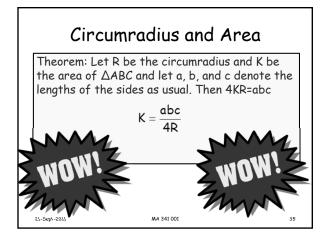












Proof	
K = $\frac{1}{2}$ ab sin C 2K = ab sin C c/sin C = 2R sin C = c/2R 2K = abc/2R 4KR = abc	
4KR = abc	

MA 341 001

36

21-Sept-2011