
Ceva’s Theorem

MA 341 – Topics in Geometry
Lecture 11



Ceva’s Theorem
The three lines containing the vertices A, B, and 
C of ABC and intersecting opposite sides at 
points L, M, and N, respectively, are concurrent 
if and only if
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Ceva’s Theorem
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Ceva’s Theorem
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Ceva’s Theorem
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Ceva’s Theorem
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Ceva’s Theorem

1AN BL CM K( ACP) K( ABP) K( BCP)
NB MALC K( BCP) K( ACP) K( ABP)= =
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Ceva’s Theorem

1AN BL CM
NB MALC = 

Now assume that
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Let BM and AL 
intersect at P and 
construct CP 
intersecting AB at 
N’, N’ different 
from N.
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Ceva’s Theorem
Then AL, BM, and CN’ are concurrent and 

AN' BL CM 1
N'B LC MA

= 

From our hypothesis it follows that

So N and N’ must coincide.

AN' AN
N'B NB

=
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M – midpoint  AM=BM, N - midpoint  BN=CN
P - midpoint  AP=CP

By Ceva’s Theorem they are concurrent.

Medians

AM BN CP 1
MB NC PA

= 
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Theorem: In any triangle the three medians 
meet in a single point, called the centroid.

In ΔABC, let M, N, and P be midpoints of AB, 
BC, AC.
Medians: CM, AN, BP 



Orthocenter
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Let ΔABC be a triangle and let P, Q, and R 
be the feet of A, B, and C on the opposite 
sides.
AP, BQ, and CR are the altitudes of ΔABC.

Theorem: The altitudes of a triangle 
ΔABC meet in a single point, called the 
orthocenter, H.



Orthocenter
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Orthocenter
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By AA 
ΔBRC~ΔBPA (a right angle and B)
 BR/BP=BC/BA
ΔAQB~ΔARC (a right angle and A)
 AQ/AR=AB/AC
ΔCPA~ΔCQB (a right angle and C)
 CP/CQ=AC/BC

BR AQ CP BC AB AC 1
BP AR CQ AB AC BC

= =   



Orthocenter
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By Ceva’s Theorem, the altitudes meet at 
a single point.



Orthocenter

1521-Sept-2011 MA 341 001

Traditional route:
BQ intersects AP.
Now construct CH and let 
it intersect AB at R.
Prove ΔARC~ΔAQB
making R=90. 
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Incenter
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Let ΔABC be a triangle and let AP, BQ, 
and CR be the angle bisectors of A, B, 
and C.
Angle Bisector Theorem: If AD is the 
angle bisector of A with D on BC, then

AB BD
AC CD

=



Incenter
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Proof: Want to use similarity.
Where is similarity?

Construct line through
C parallel to AB



Incenter
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Proof: Want to use similarity.
Where is similarity?

Construct line through
C parallel to AB

Extend AD to meet parallel line
through C at point E.



Incenter
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BAE  CEA – Alt Int Angles
BDA  CDE – vertical angles
ΔBAD ~ ΔCDE – AA
Therefore

Note that CEA  BAE  CAE 
 ΔACE isosceles  CE = AC and 

AB BD
CE CD

=

AB BD
AC CD

=



Incenter
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Let ΔABC be a triangle and let AP, BQ, 
and CR be the angle bisectors of A, B, 
and C.

Theorem: The angle bisectors of a triangle 
ΔABC meet in a single point, called the 
incenter, I.



Incenter
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Proof: Angle bisector means:

By Ceva’s Theorem we need to find the 
product:

AB BP
AC PC

=
BA AQ
BC QC

= CA AR
CB RB

=

AR BP CQ
RB PC QA

· ·



Incenter
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AR BP CQ AC AB BC 1
RB PC QA BC AC AB

· · = · · =

Thus by Ceva’s Theorem the 
angle bisectors are 
concurrent.



Circumcenter & Perp Bisectors
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Does Ceva’s Theorem apply to 
perpendicular bisectors?



Circumcenter & Perp Bisectors

2421-Sept-2011 MA 341 001

How can we get Ceva’s Theorem to apply 
to perpendicular bisectors?



Circumcenter & Perp Bisectors
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Draw in 
midsegments

EF||BC 
perpendicular 
bisector of BC is 
perpendicular to 
EF  is an 
altitude of ΔDEF



Circumcenter & Perp Bisectors
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Perpendicular bisectors of 
AB, BC and AC are 
altitudes of ΔDEF.

Altitudes meet in a single 
point  perpendicular 
bisectors are concurrent.



Circumcircle
Theorem: There is exactly one circle through 
any three non-collinear points.
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The circle = the circumcircle
The center = the circumcenter, O.
The radius = the circumradius, R.
Theorem: The circumcenter is the point of 
intersection of the three perpendicular 
bisectors.



Question
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Where do the perpendicular bisectors of 
the sides intersect the circumcircle?



Question
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Where do the perpendicular bisectors of 
the sides intersect the circumcircle?
At one end is point of intersection of 
angle bisector with circumcircle
The other end is point of intersection of 
exterior angle bisector with circumcircle.



Extended Law of Sines
Theorem: Given ΔABC with circumradius R, let 
a, b, and c denote the lengths of the sides 
opposite angles A, B, and C, respectively. 
Then
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a b c 2R
sinA sinB sinC

  



Proof
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Three cases:



Proof
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Case I: A < 90º
BP = diameter
ΔBCP right triangle
BP = 2R
 sin P = a/2R
A = P
 2R = a/sin A



Proof
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Case II: A > 90º
BP = diameter
ΔBCP right triangle
BP = 2R
 sin P = a/2R
A = P
 2R = a/sin A



Proof
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Case III: A = 90º
BP = a = diameter
BP = 2R
2R = a = a/sin A



Circumradius and Area
Theorem: Let R be the circumradius and K be 
the area of ΔABC and let a, b, and c denote the 
lengths of the sides as usual. Then 4KR=abc
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abcK
4R





Proof
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K = ½ ab sin C
2K = ab sin C
c/sin C = 2R
sin C = c/2R
2K = abc/2R
4KR = abc


