Chapter 4

Concurrency of Lines in a Triangle

Three of the results we mentioned in the last section were about the centroid, the incenter, the circumcenter and the orthocenter. Each of these is the point of concurrency of the medians, the angle bisectors, the perpendicular bisectors, and the altitudes, respectively. There are many ways that these results are proven, but rarely do we have an opportunity to see how these might be pulled together into a more unified approach. If you are doing these in your high school classroom you might use Geometer's Sketchpad to show the students that these are correct, but often no proof is given. Some of the proofs are cumbersome, but we want to look at a different approach - one using a theorem of Giovanni Ceva.
Notation: We will use $K(\triangle A B C)$ to denote the area of $\triangle A B C$.

4.1 Ceva's Theorem

Theorem 4.1 The three line containing the vertices A, B, and C of $\triangle A B C$ and intersecting opposite sides at points L, M, and N, respectively, are concurrent if and only if

$$
\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=1
$$

This is clearly an "algebraic" approach to a geometrical problem. We should look at different configurations of triangles to see if there are different cases we will need to consider in proving this. There are two cases in which the lines drawn from the vertices may intersect the sides and be concurrent. These appear in Figure 4.1.

Figure 4.1:

We will argue from the figure on the left. The same argument will work for the figure on the right, but it should be checked. ${ }^{1}$

Proof: This is an if and only if statement so we have two things to prove. First we will show that if they are concurrent then the product is 1 .

Assume that $A L, B M$, and $C N$ intersect in a point, P. Because $\triangle A B L$ and $\triangle A C L$ have the same altitude

$$
\frac{K(\triangle A B L)}{K(\triangle A C L)}=\frac{B L}{L C} .
$$

Similarly,

$$
\frac{K(\triangle P B L)}{K(\triangle P C L)}=\frac{B L}{L C},
$$

so

$$
\frac{K(\triangle A B L)}{K(\triangle A C L)}=\frac{K(\triangle P B L)}{K(\triangle P C L)}
$$

Now, a simple property of proportions

$$
\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}
$$

gives us that

$$
\frac{B L}{L C}=\frac{K(\triangle A B L)-K(\triangle P B L)}{K(\triangle A C L)-K(\triangle P C L)}=\frac{K(\triangle A B P)}{K(\triangle A C P)} .
$$

If we repeat this process only using $B M$ instead of $A L$, we get that

$$
\frac{C M}{M A}=\frac{K(\triangle B M C)}{K(\triangle B M A)}=\frac{K(\triangle P M C)}{K(\triangle P M A)}
$$

and then

$$
\frac{C M}{M A}=\frac{K(\triangle B M C)-K(\triangle P M C)}{K(\triangle B M A)-K(\triangle P M A)}=\frac{K(\triangle B C P)}{K(\triangle B A P)}
$$

Now use $C N$ instead of $A L$ and we get

$$
\frac{A N}{N B}=\frac{K(\triangle A C N)}{K(\triangle B C N)}=\frac{K(\triangle A P N)}{K(\triangle B P N)},
$$

giving

$$
\frac{A N}{N B}=\frac{K(\triangle A C N)-K(\triangle A P N)}{K(\triangle B C N)-K(\triangle B P N)}=\frac{K(\triangle A C P)}{K(\triangle B C P)}
$$

Now, the result follows:

$$
\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=\frac{K(\triangle A C P)}{K(\triangle B C P)} \cdot \frac{K(\triangle A B P)}{K(\triangle A C P)} \cdot \frac{K(\triangle B C P)}{K(\triangle B A P)}=1
$$

Now, we need to prove that if this product is 1 , then they are concurrent. To do that we will assume that $B M$ and $A L$ intersect at a point P. Construct the line $P C$ and let its intersection with $A B$ be N^{\prime}. Then $A L, B M$, and $C N^{\prime}$ are concurrent. Thus,

$$
\frac{A N^{\prime}}{N^{\prime} B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=1
$$

[^0]Our hypothesis was that

$$
\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=1
$$

Therefore,

$$
\frac{A N^{\prime}}{N^{\prime} B}=\frac{A N}{N B}
$$

so N and N^{\prime} have to coincide, proving concurrency.

4.2 Medians and Centroid

In $\triangle A B C$ let A^{\prime}, B^{\prime}, and C^{\prime} be the midpoints of the sides $B C, A C$, and $A B$ respectively. The line segments $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ are called the medians of $\triangle A B C$.

Theorem 4.2 The three medians of a triangle $\triangle A B C$ intersect at a common point G.
The common point of intersection is called the centroid of the triangle $\triangle A B C$.

Proof: We know that $A L, B M$, and $C N$ are the medians, so $A N=N B, B L=L C$, and $C M=M A$. Therefore,

$$
\begin{aligned}
& (A N)(B L)(C M)=(N B)(L C)(M A) \\
& \frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=1 .
\end{aligned}
$$

Therefore, by Ceva's Theorem they are concurrent.

Theorem 4.3 In an arbitrary triangle, the three altitudes intersect in a common point, called the orthocenter.

Proof: The argument will be for the triangle on the left (acute). It is left to you to check that the same argument works for the triangle on the right (obtuse).

$$
\begin{align*}
& \triangle A N C \sim \triangle A M B \rightarrow \frac{A N}{M A}=\frac{A C}{A B} \tag{4.1}\\
& \triangle B L A \sim \triangle B N C \rightarrow \frac{B L}{N B}=\frac{A B}{B C} \tag{4.2}\\
& \triangle C M B \sim \triangle C L A \rightarrow \frac{C M}{L C}=\frac{B C}{A C} \tag{4.3}
\end{align*}
$$

Multiplying these three quantities together we get:

$$
\frac{A N}{M A} \cdot \frac{B L}{N B} \cdot \frac{C M}{L C}=\frac{A C}{A B} \cdot \frac{A B}{B C} \cdot \frac{B C}{A C}=1
$$

Thus, the altitudes are concurrent by Ceva's Theorem.
Definition 4.1 A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension).

Using Ceva's Theorem we can prove the following results.
Theorem 4.4 The bisector of any interior angle of a nonisosceles triangle and the bisectors of the two exterior angles at the other vertices are concurrent.

Theorem 4.5 In triangle $\triangle A B C$ let $P \in A B$ and $Q \in A C$ so that $P Q \| B C$. Then $P C$ and $Q B$ intersect at a point on the median $A M$.

Theorem 4.6 In triangle $\triangle A B C$ where $C D$ is the altitude to $A B$ and P is any point on $C D, A P$ intersects $C B$ at a point Q and $B P$ intersects $C A$ at a point R. Then $\angle R D C \cong$ $\angle Q D C$.

4.3 Incircles and Law of Cosines

Theorem 4.7 The angle bisectors of a triangle intersect at a common point I called the incenter, which is the center of the unique circle inscribed in the triangle (called the incircle).

Proof: Consider the angle $\angle A B C$ and let D be a point on the angle bisector. Let E and E^{\prime} be the points on $B A$ and $B C$, respectively, so that $\angle B E D$ and $\angle B E^{\prime} D$ are right angles. Thus, $\triangle B E D \cong \triangle B E^{\prime} D$ by AAS, since they share $B D$. Thus, $|D E|=\left|D E^{\prime}\right|$ and the circle centered at D with radius $|D E|$ is tangent to both $B A$ and $B C$.

Since $A L$ is the angle bisector of $\angle A$, we have that

$$
\frac{A B}{A C}=\frac{B L}{L C}
$$

Similarly we have that

$$
\frac{B C}{B A}=\frac{C M}{A M} \text { and } \frac{C A}{C B}=\frac{A N}{B N}
$$

Therefore

$$
\frac{A N}{M A} \cdot \frac{B L}{N B} \cdot \frac{C M}{L C}=\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=\frac{C A}{C B} \cdot \frac{A B}{A C} \cdot \frac{B C}{B A}=1 .
$$

Therefore, the angle bisectors are concurrent. The first paragraph shows that this point of concurrency is equidistant from each of the three sides, and we are done.

Let the inradius r be the radius of the incircle. Let $s=\frac{1}{2}(a+b+c)$ be the semiperimeter of $\triangle A B C$.

Theorem 4.8 If r is the inradius of $\triangle A B C$, and s is the semiperimeter of $\triangle A B C$. Then

$$
\operatorname{area}(\triangle A B C)=|\triangle A B C|=r s
$$

Proof: Left for the reader.

Theorem 4.9 (Law of Cosines) For any triangle $\triangle A B C$, we have

$$
c^{2}=a^{2}+b^{2}-2 a b \cos (C) .
$$

Proof: Let D be the altitude dropped from A to $B C$. Then by the Pythagorean Theorem

$$
c^{2}=|A D|^{2}+|D B|^{2} .
$$

Now,

$$
\begin{aligned}
|A D| & =b \sin (C) \\
|D B| & =|a-b \cos (C)|
\end{aligned}
$$

Thus,

$$
\begin{aligned}
c^{2} & =b^{2} \sin ^{2}(C)+a^{2}-2 a b \cos (C)+b^{2} \cos ^{2}(C) \\
c^{2} & =a^{2}+b^{2}-2 a b \cos (C)
\end{aligned}
$$

as we needed.

Theorem 4.10 (Heron's Formula) For any triangle $\triangle A B C$

$$
|\triangle A B C|=\sqrt{s(s-a)(s-b)(s-c)}
$$

Proof: Note that

$$
|\triangle A B C|=\frac{1}{2} a b \sin (C) .
$$

By the Law of Cosines,

$$
\cos (C)=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

Thus, applying some algebra

$$
\begin{aligned}
|\triangle A B C| & =\frac{1}{2} a b \sqrt{1-\cos ^{2}(C)} \\
& =\frac{1}{2} a b \frac{\sqrt{4 a^{2} b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}}}{2 a b} \\
& =\frac{1}{4} \sqrt{\left(2 a b+a^{2}+b^{2}-c^{2}\right)\left(2 a b-a^{2}-b^{2}+c^{2}\right)} \\
& =\frac{1}{4} \sqrt{\left((a+b)^{2}-c^{2}\right)\left(c^{2}-(a-b)^{2}\right)} \\
& =\frac{1}{4} \sqrt{(a+b+c)(a+b-c)(c-a+b)(c+a-b)} \\
& =\sqrt{\frac{a+b+c a+b-c-a+b+c a-b+c}{2}} \\
& =\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$$

Heron's formula is named for Heron of Alexandria, who lived sometime between 100 BC and 300 AD. Scholars state that the formula dates back to at least Archimedes (ca. 250 BC).

4.4 The Circumcenter and its Spawn

We have seen the centroid - center of mass - and the incenter. There is yet another center of a triangle. We remember that given any three points there is a unique circle passing through them. How do you find that circle?

Take the perpendicular bisectors of the sides of a triangle formed by the three points. These bisectors meet in a common point, called the circumcenter. The radius of the circumcircle is called the circumradius.

Theorem 4.11 Given a triangle $\triangle A B C$, the perpendicular bisectors of the sides are concurrent. The point is the center of a circle which passes through the vertices of the triangle. The point is called the circumcenter of the triangle.

Proof: We must have that two of the perpendicular bisectors intersect. Let p_{1} and p_{2} denote the perpendicular bisectors of $A B$ and $A C$ respectively. If p_{1} is parallel to p_{2}, then since $A C$ is perpendicular to $p_{2}, A C$ is perpendicular to p_{1}. Since $A B$ is perpendicular to p_{1}, then $A B$ must be parallel to $A C$ or they coincide. Thus, we would not have a triangle. ${ }^{2}$ Thus, two perpendicular bisectors intersect in a point O. Let M denote the midpoint of $A B$. Then $\triangle A O M \cong \triangle B O M$, since the angle at M is a right angle, $A M \cong B M$, and $O M \cong O M$. Hence, $A O \cong B O$. Using $A C$ we can also show that $A O \cong C O$. Thus, the triangles $\triangle B O N$ and $\triangle C O N$ are congruent, where N is the midpoint of $B C$. Hence, $O N$ is perpendicular to $B C$ and we are done.

Proof: II: Can we prove this one by Ceva's Theorem? First note that we do not have any cevians at this point! The perpendicular bisectors do not go through the vertices opposite the sides. How could we use it? Clearly, it is a theorem about concurrency, so it would seem to be a good candidate for Ceva's Theorem.

[^1]What we will do is to introduce a second triangle made by connecting the three points L, M, and N. Now $\triangle L M N$ is called the medial triangle of $\triangle A B C$ since L, M, and N are the midpoints of the sides.

Since L is the midpoint of $B C$ and N is the midpoint of $A B$, we have that $\triangle B N L \sim$ $\triangle B A C$. Thus, $\angle B N L \cong \angle B A C$ and that makes $N L$ parallel to $A C$. Since $M E$ is perpendicular to $A C$, it is perpendicular to $N L$, making it an altitude of $\triangle L M N$. Likewise, we can show that each of the perpendicular bisectors of the sides of $\triangle A B C$ is an altitude of $\triangle L M N$. Since the altitudes are concurrent, the perpendicular bisectors are concurrent.

Let R denote the radius of the circumcircle.

Theorem 4.12 (Extended Law of Sines)

 In triangle $\triangle A B C$$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R .
$$

Proof: In $\triangle A B C$, let $O N$ be the perpendicular bisector of $B C$. Then $\triangle B O C$ is isosceles, $\angle B O N \cong \angle C O N$ and $B N=$ $C N=a / 2$. By the Star Trek Lemma $\angle B O C=2 A$. Thus, $\angle B O N=\angle A$. Thus,

$$
R \sin A=\frac{a}{2}
$$

and

$$
2 R=\frac{a}{\sin A} .
$$

Similarly,

$$
2 R=\frac{b}{\sin B}=\frac{c}{\sin C}, \text { Figure 4.2: Circumcenter }
$$

as we needed.
Most of us remember the Law of Sines, but few of us ever ask "What is the common ratio given in the Law of Sines?" Now you know, that common ratio is twice the radius of the circumcircle.

4.5 The Gergonne Point

Theorem 4.13 The lines containing a vertex of a triangle and the point of tangency of the opposite side with the inscribed circle are concurrent. This point of concurrency is called the Gergonne point of the triangle.

Proof: Let the incircle γ be tangent to the sides $A B, A C$, and $B C$ at the points N, M, and L, respectively. Then, in our proof of the incenter, we showed that $A N=A M$, $B N=B L$, and $C M=C L$. Therefore,

$$
\frac{A N}{M A} \cdot \frac{B L}{N B} \cdot \frac{C M}{L C}=1
$$

Thus, by Ceva's Theorem, these segments are concurrent.

4.6 More Triangle Centers

The few centers we have seen only begin to scratch the surface of what is known about the different triangle centers and central lines of triangles. I will mention only a few more here. The best location to find information about triangle centers is the Triangle Centers website.

Let $\triangle A B C$ be an arbitrary triangle. We want to consider the equilateral triangle constructed on each side of the triangle $\triangle A B C$. That is $\triangle A^{\prime} B C$ is the equilateral triangle on side $B C, \triangle A B^{\prime} C$ is the equilateral triangle on side $A C$, and $\triangle A B C^{\prime}$ is the

Figure 4.3: Gergonne point equilateral triangle on side $A B$.

The lines $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ meet in the Fermat point. This is said to be the first triangle center discovered after
 ancient Greek times. It arose from a problem posed by the great French mathematician, Pierre Fermat. The problem requests the solver to find the point P in the triangle for which the sum $P A+P B+P C$ is minimal. Torricelli proved that the Fermat point is the solution if each angle of the triangle $\triangle A B C$ is less than 120°. The Fermat point is also known as the first isogonic center. This is because the angles $\angle B F C, \angle C F A$ and $\angle A F B$ are all equal.

Figure 4.4: Fermat point

[^0]: ${ }^{1}$ Of course, it has been checked millions of times - or so we would think. What if everyone just assumed that "somebody else" will check it, so I don't have to? Where would that put us?

[^1]: ${ }^{2}$ This actually uses a result that is equivalent to Euclid's fifth postulate.

