
Chapter 4

Concurrency of Lines in a Triangle

Three of the results we mentioned in the last section were about the centroid, the incenter,
the circumcenter and the orthocenter. Each of these is the point of concurrency of the
medians, the angle bisectors, the perpendicular bisectors, and the altitudes, respectively.
There are many ways that these results are proven, but rarely do we have an opportunity to
see how these might be pulled together into a more unified approach. If you are doing these
in your high school classroom you might use Geometer’s Sketchpad to show the students
that these are correct, but often no proof is given. Some of the proofs are cumbersome, but
we want to look at a different approach — one using a theorem of Giovanni Ceva.

Notation: We will use K(△ABC) to denote the area of △ABC.

4.1 Ceva’s Theorem

Theorem 4.1 The three line containing the vertices A, B, and C of △ABC and intersect-
ing opposite sides at points L, M , and N , respectively, are concurrent if and only if

AN

NB
·
BL

LC
·
CM

MA
= 1.

This is clearly an “algebraic” approach to a geometrical problem. We should look at
different configurations of triangles to see if there are different cases we will need to consider
in proving this. There are two cases in which the lines drawn from the vertices may intersect
the sides and be concurrent. These appear in Figure 4.1.
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Figure 4.1:
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40 CHAPTER 4. CONCURRENCY OF LINES IN A TRIANGLE

We will argue from the figure on the left. The same argument will work for the figure
on the right, but it should be checked.1

Proof: This is an if and only if statement so we have two things to prove. First we will
show that if they are concurrent then the product is 1.

Assume that AL, BM , and CN intersect in a point, P . Because △ABL and △ACL
have the same altitude

K(△ABL)

K(△ACL)
=

BL

LC
.

Similarly,
K(△PBL)

K(△PCL)
=

BL

LC
,

so
K(△ABL)

K(△ACL)
=

K(△PBL)

K(△PCL)
.

Now, a simple property of proportions

a

b
=

c

d
=

a − c

b − d

gives us that
BL

LC
=

K(△ABL) − K(△PBL)

K(△ACL) − K(△PCL)
=

K(△ABP )

K(△ACP )
.

If we repeat this process only using BM instead of AL, we get that

CM

MA
=

K(△BMC)

K(△BMA)
=

K(△PMC)

K(△PMA)
,

and then
CM

MA
=

K(△BMC)− K(△PMC)

K(△BMA) − K(△PMA)
=

K(△BCP )

K(△BAP )
.

Now use CN instead of AL and we get

AN

NB
=

K(△ACN)

K(△BCN)
=

K(△APN)

K(△BPN)
,

giving
AN

NB
=

K(△ACN) − K(△APN)

K(△BCN)− K(△BPN)
=

K(△ACP )

K(△BCP )
.

Now, the result follows:

AN

NB
·
BL

LC
·
CM

MA
=

K(△ACP )

K(△BCP )
·
K(△ABP )

K(△ACP )
·
K(△BCP )

K(△BAP )
= 1.

Now, we need to prove that if this product is 1, then they are concurrent. To do that
we will assume that

←→

BM and
←→

AL intersect at a point P . Construct the line
←→

PC and let its
intersection with

←→

AB be N ′. Then
←→

AL,
←→

BM , and
←→

CN ′ are concurrent. Thus,

AN ′

N ′B
·
BL

LC
·
CM

MA
= 1.

1Of course, it has been checked millions of times — or so we would think. What if everyone just assumed

that “somebody else” will check it, so I don’t have to? Where would that put us?
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4.2. MEDIANS AND CENTROID 41

Our hypothesis was that
AN

NB
·
BL

LC
·
CM

MA
= 1.

Therefore,
AN ′

N ′B
=

AN

NB
,

so N and N ′ have to coincide, proving concurrency.

4.2 Medians and Centroid

In △ABC let A′, B′, and C ′ be the midpoints of the sides BC, AC, and AB respectively.
The line segments AA′, BB′, and CC ′ are called the medians of △ABC.

Theorem 4.2 The three medians of a triangle △ABC intersect at a common point G.

G

N

L

M

B C

A
The common point of intersection is

called the centroid of the triangle △ABC.

Proof: We know that AL, BM , and CN
are the medians, so AN = NB, BL = LC,
and CM = MA. Therefore,

(AN)(BL)(CM) = (NB)(LC)(MA)

AN

NB
·
BL

LC
·
CM

MA
= 1.

Therefore, by Ceva’s Theorem they are con-
current.

Theorem 4.3 In an arbitrary triangle, the
three altitudes intersect in a common point,
called the orthocenter.

L

B

M

N

N

O

M

LB C

A
A

CO
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42 CHAPTER 4. CONCURRENCY OF LINES IN A TRIANGLE

Proof: The argument will be for the tri-
angle on the left (acute). It is left to you to check that the same argument works for the
triangle on the right (obtuse).

△ANC ∼ △AMB →
AN

MA
=

AC

AB
(4.1)

△BLA ∼ △BNC →
BL

NB
=

AB

BC
(4.2)

△CMB ∼ △CLA →
CM

LC
=

BC

AC
(4.3)

Multiplying these three quantities together we get:

AN

MA
·

BL

NB
·
CM

LC
=

AC

AB
·
AB

BC
·
BC

AC
= 1.

Thus, the altitudes are concurrent by Ceva’s Theorem.

Definition 4.1 A cevian is a line segment which joins a vertex of a triangle with a point
on the opposite side (or its extension).

Using Ceva’s Theorem we can prove the following results.

Theorem 4.4 The bisector of any interior angle of a nonisosceles triangle and the bisectors
of the two exterior angles at the other vertices are concurrent.

Theorem 4.5 In triangle △ABC let P ∈ AB and Q ∈ AC so that PQ ‖ BC. Then PC
and QB intersect at a point on the median AM .

Theorem 4.6 In triangle △ABC where CD is the altitude to AB and P is any point on
CD, AP intersects CB at a point Q and BP intersects CA at a point R. Then ∠RDC ∼=
∠QDC.

4.3 Incircles and Law of Cosines

Theorem 4.7 The angle bisectors of a triangle intersect at a common point I called the
incenter, which is the center of the unique circle inscribed in the triangle (called the incircle).

Proof: Consider the angle ∠ABC and let D be a point on the angle bisector. Let E and
E′ be the points on BA and BC, respectively, so that ∠BED and ∠BE′D are right angles.
Thus, △BED ∼= △BE′D by AAS, since they share BD. Thus, |DE| = |DE′| and the circle
centered at D with radius |DE| is tangent to both BA and BC.

Since AL is the angle bisector of ∠A, we have that

AB

AC
=

BL

LC
.

Similarly we have that
BC

BA
=

CM

AM
and

CA

CB
=

AN

BN
.
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4.3. INCIRCLES AND LAW OF COSINES 43

Therefore
AN

MA
·

BL

NB
·
CM

LC
=

AN

NB
·
BL

LC
·
CM

MA
=

CA

CB
·
AB

AC
·
BC

BA
= 1.

Therefore, the angle bisectors are concurrent. The first paragraph shows that this point
of concurrency is equidistant from each of the three sides, and we are done.

Let the inradius r be the radius of the incircle. Let s = 1

2
(a+b+c) be the semiperimeter

of △ABC.

Theorem 4.8 If r is the inradius of △ABC, and s is the semiperimeter of △ABC. Then

area(△ABC) = |△ABC| = rs.

Proof: Left for the reader.

Theorem 4.9 (Law of Cosines) For any triangle △ABC, we have

c2 = a2 + b2 − 2ab cos(C).

Proof: Let D be the altitude dropped from A to BC. Then by the Pythagorean Theorem

c2 = |AD|2 + |DB|2.

Now,

|AD| = b sin(C)

|DB| = |a − b cos(C)|

Thus,

c2 = b2 sin2(C) + a2 − 2ab cos(C) + b2 cos2(C)

c2 = a2 + b2 − 2ab cos(C)

as we needed.

Theorem 4.10 (Heron’s Formula) For any triangle △ABC

|△ABC| =
√

s(s − a)(s − b)(s − c).

Proof: Note that

|△ABC| =
1

2
ab sin(C).

By the Law of Cosines,

cos(C) =
a2 + b2 − c2

2ab
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44 CHAPTER 4. CONCURRENCY OF LINES IN A TRIANGLE

Thus, applying some algebra

|△ABC| =
1

2
ab

√

1 − cos2(C)

=
1

2
ab

√

4a2b2 − (a2 + b2 − c2)2

2ab

=
1

4

√

(2ab + a2 + b2 − c2)(2ab − a2 − b2 + c2)

=
1

4

√

((a + b)2 − c2)(c2 − (a − b)2)

=
1

4

√

(a + b + c)(a + b − c)(c − a + b)(c + a − b)

=

√

a + b + c

2

a + b − c

2

−a + b + c

2

a − b + c

2

=
√

s(s − a)(s − b)(s − c)

Heron’s formula is named for Heron of Alexandria, who lived sometime between 100 BC
and 300 AD. Scholars state that the formula dates back to at least Archimedes (ca. 250
BC).

4.4 The Circumcenter and its Spawn

We have seen the centroid—center of mass — and the incenter. There is yet another center
of a triangle. We remember that given any three points there is a unique circle passing
through them. How do you find that circle?

Take the perpendicular bisectors of the sides of a triangle formed by the three points.
These bisectors meet in a common point, called the circumcenter. The radius of the cir-
cumcircle is called the circumradius.

Theorem 4.11 Given a triangle △ABC, the perpendicular bisectors of the sides are con-
current. The point is the center of a circle which passes through the vertices of the triangle.
The point is called the circumcenter of the triangle.

Proof: We must have that two of the perpendicular bisectors intersect. Let p1 and p2

denote the perpendicular bisectors of AB and AC respectively. If p1 is parallel to p2, then
since AC is perpendicular to p2, AC is perpendicular to p1. Since AB is perpendicular to
p1, then AB must be parallel to AC or they coincide. Thus, we would not have a triangle.2

Thus, two perpendicular bisectors intersect in a point O. Let M denote the midpoint of
AB. Then △AOM ∼= △BOM , since the angle at M is a right angle, AM ∼= BM , and
OM ∼= OM . Hence, AO ∼= BO. Using AC we can also show that AO ∼= CO. Thus, the
triangles △BON and △CON are congruent, where N is the midpoint of BC. Hence, ON
is perpendicular to BC and we are done.

Proof: II: Can we prove this one by Ceva’s Theorem? First note that we do not have any
cevians at this point! The perpendicular bisectors do not go through the vertices opposite
the sides. How could we use it? Clearly, it is a theorem about concurrency, so it would
seem to be a good candidate for Ceva’s Theorem.

2This actually uses a result that is equivalent to Euclid’s fifth postulate.
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4.5. THE GERGONNE POINT 45

What we will do is to introduce a second triangle made by connecting the three points
L, M , and N . Now △LMN is called the medial triangle of △ABC since L, M , and N are
the midpoints of the sides.

Since L is the midpoint of BC and N is the midpoint of AB, we have that △BNL ∼
△BAC. Thus, ∠BNL ∼= ∠BAC and that makes NL parallel to AC. Since ME is perpen-
dicular to AC, it is perpendicular to NL, making it an altitude of △LMN . Likewise, we
can show that each of the perpendicular bisectors of the sides of △ABC is an altitude of
△LMN . Since the altitudes are concurrent, the perpendicular bisectors are concurrent.

a/2

R

C'
B'

A'

O

A

B

C

Figure 4.2: Circumcenter

Let R denote the radius of the circum-
circle.

Theorem 4.12 (Extended Law of Sines)
In triangle △ABC

a

sin A
=

b

sin B
=

c

sin C
= 2R.

Proof: In △ABC, let ON be the perpen-
dicular bisector of BC. Then △BOC is
isosceles, ∠BON ∼= ∠CON and BN =
CN = a/2. By the Star Trek Lemma
∠BOC = 2A. Thus, ∠BON = ∠A. Thus,

R sin A =
a

2

and
2R =

a

sinA
.

Similarly,

2R =
b

sin B
=

c

sin C
,

as we needed.

Most of us remember the Law of Sines, but few of us ever ask “What is the common
ratio given in the Law of Sines?” Now you know, that common ratio is twice the radius of
the circumcircle.

4.5 The Gergonne Point

Theorem 4.13 The lines containing a vertex of a triangle and the point of tangency of the
opposite side with the inscribed circle are concurrent. This point of concurrency is called
the Gergonne point of the triangle.

Proof: Let the incircle γ be tangent to the sides AB, AC, and BC at the points N ,
M , and L, respectively. Then, in our proof of the incenter, we showed that AN = AM ,
BN = BL, and CM = CL. Therefore,

AN

MA
·

BL

NB
·
CM

LC
= 1.

Thus, by Ceva’s Theorem, these segments are concurrent.
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4.6 More Triangle Centers

G

L

N

M

O

A

B C

Figure 4.3: Gergonne point

The few centers we have seen only begin
to scratch the surface of what is known
about the different triangle centers and cen-
tral lines of triangles. I will mention only a
few more here. The best location to find in-
formation about triangle centers is the Tri-
angle Centers website.

Let △ABC be an arbitrary triangle.
We want to consider the equilateral trian-
gle constructed on each side of the triangle
△ABC. That is △A′BC is the equilateral
triangle on side BC, △AB′C is the equilat-
eral triangle on side AC, and △ABC ′ is the
equilateral triangle on side AB.

F

C'

B'

A'

C

B
A

Figure 4.4: Fermat point

The lines AA′, BB′, and CC ′ meet in the Fermat point.
This is said to be the first triangle center discovered after
ancient Greek times. It arose from a problem posed by the
great French mathematician, Pierre Fermat. The problem
requests the solver to find the point P in the triangle for
which the sum PA+PB+PC is minimal. Torricelli proved
that the Fermat point is the solution if each angle of the
triangle △ABC is less than 120◦. The Fermat point is
also known as the first isogonic center. This is because the
angles ∠BFC, ∠CFA and ∠AFB are all equal.
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