
Chapter 10

Poincaré Upper Half Plane Model

The next model of the hyperbolic plane that we will consider is also due to Henri Poincaré.
We will be using the upper half plane, or {(x, y) | y > 0}. We will want to think of this
with a different distance metric on it.

Let H = {x + iy | y > 0} together with the arclength element

ds =

√

dx2 + dy2

y
.

Note that we have changed the arclength element for this model!!!

10.1 Vertical Lines

Let x(t) = (x(t), y(t)) be a piecewise smooth parametrization of a curve between the points
x(t0) and x(t1).

Recall that in order to find the length of a curve we break the curve into small pieces
and approximate the curve by multiple line segments. In the limiting process we find that
the Euclidean arclength element is ds =

√

dx2 + dy2. We then find the length of a curve
by integrating the arclength over the parametrization of the curve.

s =

∫ t1

t0

√

(

dx

dt

)2

+

(

dy

dt

)2

dt.

Now, we want to work in the Poincaré Half Plane model. In this case the length of this
same curve would be

sP =

∫ t1

t0

√

(

dx
dt

)2
+
(

dy
dt

)2

y
dt.

Let’s look at this for a vertical line segment from (x0, y0) to (x0, y1). We need to param-
eterize the curve, and then use the arclength element to find its length. Its parametrization
is:

x(t) = (x0, y), y ∈ [y0, y1].

The Poincaré arclength is then

sP =

∫ t1

t0

√

(

dx
dt

)2
+
(

dy
dt

)2

y
dt =

∫ t1

t0

1

y
dy = ln(y)|y1

y0
= ln(y1) − ln(y0) = ln(y1/y0)
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110 CHAPTER 10. POINCARÉ UPPER HALF PLANE MODEL

Now, consider any piecewise smooth curve x(t) = (x(t), y(t)) starting at (x0, y0) and
ending at (x0, y1). So this curves starts and ends at the same points as this vertical line
segment. Suppose that y(t) is an increasing function. This is reasonable. Now, we have

s =

∫ t1

t0

√

(

dx
dt

)2
+
(

dy
dt

)2

y
dt

≥
∫ t1

t0

√

(

dy
dt

)2

y
dt

≥
∫ y(t1)

y(t0)

dy

y

≥ ln(y(t1)) − ln(y(t0)).

This means that this curve is longer than the vertical line segment which joins the two
points. Therefore, the shortest path that joins these two points is a vertical (Euclidean)
line segment. Thus, vertical (Euclidean) lines in the upper half plane are lines in the
Poincaré model.

Let’s find the distance from (1, 1) to (1, 0) which would be the distance to the real axis.
Now, since (1, 0) is NOT a point of H , we need to find lim

δ→0
d((1, 1), (1, δ)). According to

what we have above,

dP ((1, 1), (1, δ)) = ln(1) − ln(δ) = − ln(δ).

Now, in the limit we find that

dP ((1, 1), (1, 0)) = lim
δ→0

dP ((1, 1), (1, δ)) = lim
δ→0

− ln(δ) = +∞

This tells us that a vertical line has infinite extent in either direction.

10.2 Isometries

An isometry is a map that preserves distance, i.e., a function f : H 2 → H 2 is an isometry
if

d(f(P ), f(Q) = d(P,Q).

What are some isometries in the Euclidean plane? The usual isometries are translations
(sometimes called parallel translations), reflections through a line, rotations about a point.
Any others? Then, what are the isometries of H ?

The arclength element must be preserved under the action of any isometry. That is, a
map

(u(x, y), v(x, y))

is an isometry if
du2 + dv2

v2
=

dx2 + dy2

y2
.

Some maps will be obvious candidates for isometries and some will not.
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10.3. INVERSION IN THE CIRCLE: EUCLIDEAN CONSIDERATIONS 111

Let’s start with the following candidate:

Ta(x, y) = (u, v) = (x + a, y).

Now, clearly du = dx and dv = dy, so

du2 + dv2

v2
=

dx2 + dy2

y2
.

Thus, Ta is an isometry. What does it do? It translates the point a units in the horizontal
direction. This is called the horizontal translation by a.

Let’s try:
Rb(x, y) = (u, v) = (2b − x, y).

Again, du = −dx, dv = dy and our arclength element is preserved. This isometry is a
reflection through the vertical line x = b.

We need to consider the following map:

Φ(x, y) = (u, v) =

(

x

x2 + y2
,

y

x2 + y2

)

.

First, let’s check that it is a Poincaré isometry. Let r2 = x2 + y2. Then

du2 + dv2

v2
=

r4

y2

(

(

r2dx − 2x2dx − 2xydy

r4

)2

+

(

r2dy − 2xydx − 2y2dy

r4

)2
)

=
1

y2

(

((y2 − x2)dx − 2xydy)2 − ((x2 − y2)dy − 2xydx)2

r4

)

=
1

r4y2

(

(x4 − 2x2y2 + y4 + 4x2y2)dx2 − (2xy(y2 − x2) + 2xy(x2 − y2)dxdy + r4dy2
)

=
dx2 + dy2

y2

We will study this function further. It is called inversion in the unit circle.

10.3 Inversion in the Circle: Euclidean Considerations

We are building a tool that we will use in studying H . This is a Euclidean tool, so we will
be working in Euclidean geometry to prove results about this tool. There is more about
inversions in the circle in Appendix A.

Let’s look at this last isometry. We would like to understand what this function does.
For each point (x, y), let r2 = x2 + y2. This makes r the distance from the origin to (x, y).
This function sends (x, y) to (x/r2, y/r2). The distance from Φ(x, y) = (x/r2, y/r2) to the
origin is 1/r2. Thus, if r > 1 then the image of the point is on the same ray, but its distance
to the origin is now less than one. Likewise, if r < 1, then the image lies on the same
ray but the image point lies at a distance greater than 1 from the origin. If r = 1, then
Φ(x, y) = (x, y). Thus, Φ leaves the unit circle fixed and sends every point inside the unit
circle outside the circle and every point outside the unit circle gets sent inside the unit
circle. In other words, Φ turns the circle inside out.

What does Φ do to a line? What does it do to a circle? Let’s see.

MATH 6118-090 Spring 2008



112 CHAPTER 10. POINCARÉ UPPER HALF PLANE MODEL

The image of a point P under inversion in a circle centered at O and with radius r is
the point P ′ on the ray OP and such that

|OP ′| =
r2

|OP | .

Lemma 10.1 Let ℓ be a line which does not go through the origin O. The image of ℓ under
inversion in the unit circle is a circle which goes through the origin O.

Proof: We will prove this for a line ℓ not intersecting the unit circle.

� �� �� �
�

Let A be the foot of O on ℓ and
let |OA| = a. Find A′ on OA so
that |OA′| = 1/a. Construct the cir-
cle with diameter OA′. We want to
show that this circle is the image of
ℓ under inversion.

Let P ∈ ℓ and let |OP | = p.
Let P ′ be the intersection of the seg-
ment OP with the circle with diam-
eter OA′. Let |OP ′| = x. Now,
look at the two triangles △OAP and
△OP ′A′. These two Euclidean tri-
angles are similar, so

|OP ′|
|OA′| =

|OA|
|OP |

x

1/a
=

a

p

x =
1

p

Therefore, P ′ is the image of P under inversion in the unit circle.

Lemma 10.2 Suppose Γ is a circle which does not go through the origin O. Then the image
of Γ under inversion in the unit circle is a circle.

Proof: Again, we prove this for just one case: the case where Γ does not intersect the unit
circle.

Let the line through O and the center of Γ intersect Γ at points A and B. Let |OA| = a
and |OB| = b. Let Γ′ be the image of Γ under dilation by the factor 1/ab. This dilation is
∆: (x, y) 7→ (x/ab, y/ab).

Let B′ and A′ be the images of A and B, respectively, under this dilation, i.e. ∆(A) = B′

and ∆(B) = A′. Then |OA′| = (1/ab)b = 1/a and |OB′| = (1/ab)a = 1/b. Thus, A′ is the
image of A under inversion in the unit circle. Likewise, B′ is the image of B. Let ℓ′ be an
arbitrary ra through O which intersects Γ at P and Q. Let Q′ and P ′ be the images of P
and Q, respectively, under the dilation, ∆.
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10.4. LINES IN THE POINCARÉ HALF PLANE 113

ΓΓΓΓ′′′′

ΓΓΓΓ

A'B'

Q'
P'

Q

P

BA
O

Now, △OA′P ′ ∼ △OBQ, since
one is the dilation of the other. Note
that ∠QBA ∼= ∠QPA by the Star
Trek lemma, and hence △OBQ ∼
△OPA. Thus, △OA′P ′ ∼ △OPA.
From this it follows that

|OA′|
|OP | =

|OP ′|
|OA|

1/a

|OP | =
|OP ′|

a

|OP ′| =
1

|OP |

Thus, P ′ is the image of P under inversion, and Γ′ is the image of Γ under inversion.

Lemma 10.3 Inversions preserve angles.

β

�
''

α �
'

�
A'

P'

P

O

A

Proof: We will just consider the
case of an angle α created by the in-
tersection of a line ℓ not intersecting
the unit circle, and a line ℓ′ through
O.

Let A be the vertex of the angle
α. Let P be the foot of O in ℓ. Let
P ′ be the image of P under inver-
sion. Then the image of ℓ is a circle
Γ whose diameter is OP ′. The im-
age of A is A′ = Γ

⋂

ℓ′. Let ℓ′′ be
the tangent to Γ at A′. Then β, the
angle formed by ℓ′ and ℓ′′ at A′ is
the image of α under inversion. We
need to show that α ∼= β.

First, △OAP ∼ △OP ′A′, since they are both right triangles and share the angle O.
Thus, ∠A′P ′O ∼= ∠OAP ∼= α. By the tangential case of the Star Trek lemma, β ∼= ∠A′P ′O.
Thus, α ∼= β.

10.4 Lines in the Poincaré Half Plane

From what we have just seen we can now prove the following.

Lemma 10.4 Lines in the Poincaré upper half plane model are (Euclidean) lines and (Eu-
clidean) half circles that are perpendicular to the x-axis.

Proof: Let P and Q be points in H not on the same vertical line. Let Γ be the circle
through P and Q whose center lies on the x-axis. Let Γ intersect the x-axis at M and
N . Now consider the mapping ϕ which is the composition of a horizontal translation by
−M followed by inversion in the unit circle. This map ϕ is an isometry because it is the
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114 CHAPTER 10. POINCARÉ UPPER HALF PLANE MODEL

composition of two isometries. Note that M is first sent to O and then to ∞ by inversion.
Thus, the image of Γ is a (Euclidean) line. Since the center of the circle is on the real axis,
the circle intersects the axis at right angles. Since inversion preserves angles, the image of
Γ is a vertical (Euclidean) line. Since vertical lines are lines in the model, and isometries
preserve arclength, it follows that Γ is a line through P and Q.

Problem: Let P = 4 + 4i and Q = 5 + 3i. We want to find M , N , and the distance from
P to Q.

First we need to find Γ. We need to find the perpendicular bisector of the segment PQ
and then find where this intersects the real axis. The midpoint of PQ is the point (9+7i)/2,
or (9/2, 7/2). The equation of the line through PQ is y = 8− x. Thus, the equation of the
perpendicular bisector is y = x− 1. This intersects the x-axis at x = 1, so the center of the
circle is 1+0i. The circle has to go through the points 4+4i and 5+3i. Thus the radius is
5, using the Pythagorean theorem. Hence, the circle meets the x-axis at M = −4 + 0i and
N = 6 + 0i.

We need to translate the line Γ so that M goes to the origin. Thus, we need to translate
by 4 and we need to apply the isometry T4 : (x, y) → (x + 4, y). Then, P ′ = T4(P ) = (8, 4)
and Q′ = T4(Q) = (9, 3). Now, we need to invert in the unit circle and need to find the
images of P ′ and Q′. We know what Φ does:

Φ(P ′) = Φ((8, 4)) =

(

8

80
,

4

80

)

=

(

1

10
,

1

20

)

Φ(Q′) = Φ((9, 3)) =

(

9

90
,

3

90

)

=

(

1

10
,

1

30

)

Note that we now have these two images on a vertical (Euclidean) line. So the distance
between the points dP (Φ(P ′),Φ(Q′)) = log(1/20) − log(1/30) = log(3/2). Thus, the points
P and Q are the same distance apart.

Φ(T4(Γ))

Γ T4(Γ)

T4(Q)

T4(P)

NM

P=4+4i

Q=5+3i

Figure 10.1: Isometries in H
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10.5. FRACTIONAL LINEAR TRANSFORMATIONS 115

10.5 Fractional Linear Transformations

We want to be able to classify all of the isometries of the Poincaré half plane. It turns out
that the group of direct isometries is easy to describe. We will describe them and then see
why they are isometries.

A fractional linear transformation is a function of the form

T (z) =
az + b

cz + d

where a, b, c, and d are complex numbers and ad − bc 6= 0. The domain of this function is
the set of all complex numbers C together with the symbol, ∞, which will represent a point
at infinity. Extend the definition of T to include the following

T (−d/c) = lim
z→− d

c

az + b

cz + d
= ∞, if c 6= 0,

T (∞) = lim
z→∞

az + b

cz + d
=

a

c
if c 6= 0,

T (∞) = lim
z→∞

az + b

cz + d
= ∞ if c = 0.

The fractional linear transformation, T , is usually represented by a 2 × 2 matrix

γ =

[

a b
c d

]

and write T = Tγ . The matrix representation for T is not unique, since T is also represented
by

kγ =

[

ka kb
kc kd

]

for any scalar k 6= 0. We define two matrices to be equivalent if they represent the same
fractional linear transformation. We will write γ ≡ γ′.

Lemma 10.5

Tγ1γ2
= Tγ1

(Tγ2
(z)).

From this the following theorem follows.

Theorem 10.1 The set of fractional linear transformations forms a group under composi-
tion (matrix-multiplication).

Proof: Theorem 10.5 shows us that this set is closed under our operation. The identity
element is given by the identity matrix,

I =

[

1 0
0 1

]

.

The fractional linear transformation associated with this is

TI(z) =
z + 0

0z + 1
= z.
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116 CHAPTER 10. POINCARÉ UPPER HALF PLANE MODEL

The inverse of an element is
T−1

γ = Tγ−1 ,

since
Tγ(Tγ−1(z)) = TI(z) = z.

We can also see that to find Tγ
−1 we set w = Tγ(z) and solve for z.

w =
az + b

cz + d

(cz + d)w = az + b

z =
dw − b

−cw + a
.

That is Tγ
−1 is represented by

[

d −b
−c a

]

≡ 1

ad − bc

[

d −b
−c a

]

= γ−1.

Here we must use the condition that ad − bc 6= 0.

In mathematical circles when we have such an interplay between two objects — matrices
and fractional linear transformations — we write γz when Tγ(z) is meant. Under this
convention we may write

γz =

[

a b
c d

]

z =
az + b

cz + d
.

Note that the second “=” is not equals in the usual sense, but is instead an assignment or
a definition.

This follows the result of Theorem 10.5 in that

(γ1γ2)z = γ1(γ2z),

however in general k(γz) 6= (kγ)z. Note that

k(γz) =
k(az + b)

cz + d
,

while

(kγz) = γz =
az + b

cz + d
.

Recall the following definitions for any ring R:

M2×2(R) =

{[

a b
c d

]

| a, b, c, d ∈ R

}

GL2(R) = {γ ∈ M2×2(R) | det(γ) 6= 0}
SL2(R) = {γ ∈ GL2(R) | det(γ) = 1} .

For the purposes of what we will be doing, we prefer the ring to be the field of complex
numbers, C, the field of real numbers, R, the field of rational numbers, Q, or the ring of
integers Z. GL2(R) is called the general linear group over R, and SL2(R) is called the special
linear group over R.
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10.5. FRACTIONAL LINEAR TRANSFORMATIONS 117

There is another group, which is not as well known. This is the projective special
linear group denoted by PSL2(R). PSL2(R) is obtained from GL2(R) by identifying γ with
kγ for any k 6= 0. The group PSL2(C) is isomorphic to the group of fractional linear
transformations.

Remember that we wanted to classify the group of direct isometries on the upper half
plane. We want to show that any 2 × 2 matrix with real coefficients and determinant 1
represents a fractional linear transformation which is an isometry of the Poincaré upper
half plane.

Lemma 10.6 The horizontal translation by a

Ta(x, y) = (x + a, y),

can be thought of as a fractional linear transformation, represented by an element of SL2(R).

Proof: If a ∈ R, then

Ta(x, y) = Ta(z) = z + a, z ∈ C,

and this is represented by

τa =

[

1 a
0 1

]

.

This is what we needed.

Lemma 10.7 The map

ϕ(x, y) =

( −x

x2 + y2
,

y

x2 + y2

)

,

which is inversion in the unit circle followed by reflection through x = 0, can be thought of
as a fractional linear transformation which is represented by an element of SL2(R).

Proof: As a function of complex numbers, the map ϕ is

ϕ(z) = ϕ(x + iy) =
−x + iy

x2 + y2
=

−(x − iy)

(x + iy)(x − iy)
= −1

z
.

This map is generated by

σ =

[

0 −1
1 0

]

.

Theorem 10.2 The group SL2(R) is generated by σ and the maps τa for a ∈ R.

Proof: Note that

στr =

[

0 −1
1 0

] [

1 r
0 1

]

=

[

0 −1
1 r

]
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118 CHAPTER 10. POINCARÉ UPPER HALF PLANE MODEL

so

στsστr =

[

0 −1
1 s

] [

0 −1
1 r

]

=

[

−1 −r
s rs − 1

]

and

στtστsστr =

[

0 −1
1 t

] [

−1 −r
s rs − 1

]

=

[

−s 1 − rs
st − 1 rst − r − t

]

Now, we know what the composition of these transformations will look like. To say that
these generate SL)2(R) means is that for an arbitrary

γ =

[

a b
c d

]

∈ SL)2(R)

we need to find r, s, t ∈ R so that

γ =

[

a b
c d

]

=

[

−s 1 − rs
st − 1 rst − r − t

]

.

This cannot be too difficult for a 6= 0. Set s = −a, solve b = 1− rs = 1 + ra for r and solve
c = st − 1 = −at − 1 for t. This gives

r =
b − 1

a
and t =

−1 − c

a
.

Since det(γ) = 1, this forces d = rst − r − t. Thus, for a 6= 0, then γ can be written as a
product involving only σ and translations. If a = 0, then c 6= 0, since ad − bc = 1, and

σγ =

[

−c −d
a b

]

,

which can be written as a suitable product. Thus SL2(R) is generated by the translations
and σ.

Lemma 10.8 The group SL2(R), when thought of as a group of fractional linear transfor-
mations, is a subgroup of the isometries of the Poincaré upper half plane.

Lemma 10.9 If γ ∈ GL2(R) and detγ > 0, then γ is an isometry of the Poincaré upper
half plane.

Theorem 10.3 The image of a circle or line in C under the action of a fractional linear
transformation γ ∈ SL2(C) is again a circle or a line.
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10.6 Cross Ratio

Henri Poincaré was studying this cross ratio when he discovered this particular representa-
tion of the hyperbolic plane.

Let a, b, c, d be elements of the extended complex numbers, C
⋃{∞}, at least three of

which are distinct. The cross ratio of a, b, c, and d is defined to be

[a, b; c, d] =

a − c

a − d
b − c

b − d

=
(a − c)(b − d)

(a − d)(b − c)
.

The algebra for the element ∞ and division by zero is the same as it is for fractional linear
transformations.

If a = d, [a, b; c, d] = ∞

[∞, b; c, d] =
b − d

b − c
= [a, b; c,∞]

[a,∞; c, d] =
a − c

a − d
= [a, b;∞, d]

If we fix three distinct elements a, b, and c ∈ C
⋃{∞}, and consider the fourth element

as a variable z, then we get a fractional linear transformation:

T (z) = (z, a; b, c) =

z − b

z − c
a − b

a − c

.

This is the unique fractional linear transformation T with the property that

T (a) = 1, T (b) = 0, and T (c) = ∞,

that is, it sends a to 1, b to 0 and c to ∞.

We need to look at several examples to see why we want to use the cross ratio.

Example 10.1 Find the fractional linear transformation which sends 1 to 1, −i to 0 and
−1 to ∞.

From above we need to take: a = 1, b = −i, and c = −1. Thus, set

w = (z, 1;−i,−1)

=
z + i

z + 1
/

1 + i

1 + 1

=
2z + 2i

(1 + i)(z + 1)

In matrix notation,

w =

[

2 2i
1 + i 1 + i

]

z.
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120 CHAPTER 10. POINCARÉ UPPER HALF PLANE MODEL

Example 10.2 Find the fractional linear transformation which fixes i, sends ∞ to 3, and
0 to −1/3.

This doesn’t seem to fit our model. However, we can combine two of our transformations
to get this one. First think of sending

i → 1 i → 1

∞ → 0 and 3 → 0

0 → ∞ −1

3
→ ∞

If we go by the first transformation followed by the inverse of the second we will send:

i → 1 → i

∞ → 0 → 3

0 → ∞→ − 1

3

Let
γ1z = (z, i;∞, 0)

and
γ2w = (w, i; 3,−1/3).

So, γ1(i) = 1, γ1(∞) = 0, γ1(0) = ∞, γ2(i) = 1, γ2(3) = 0, and γ2(−1/3) = ∞. Therefore,
γ−1
2 (1) = i, γ−1

2 (0) = 3, and γ−1
2 (∞) = −1/3. Now, compose these functions:

γ = γ−1
2 γ1.

Let’s check what γ does: γ(i) = i, γ(∞) = 3 and γ(0) = −1/3, as desired.
Now, set w = γ(z) and

w = γ−1
2 γ1(z)

γ2(w) = γ1(z)

(w, i; 3,−1/3) = (z, i;∞, 0).

Now, we need to solve for z:

w − 3

w + 1/3
/

i − 3

i + 1/3
=

z −∞
z − 0

/
i −∞
i − 0

(3i + 1)w − 3(3i + 1)

3(i − 3)w + i − 3
=

i

z

z =
(−3(3i + 1)w − (3i + 1)

(3i + 1)w − 3(3i + 1)

=
3w + 1

−w + 3

=

[

3 1
−1 3

]

Then, using our identification, we will get that

w =
1

10

[

3 −1
1 3

]

≡
[

3 −1
1 3

]

z
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10.7 Translations

Now, the Poincaré upper half plane is a model for the hyperbolic plane. We need to
check this, but first let’s look at what transformational properties we can discover with the
machinery that we have built.

Transformational Property 1: Given any two points P and Q, there exists an isometry
f such that f(P ) = Q.

Let P = a+bi and Q = c+di. We have many choices, but we will start with an isometry
that also fixes the point at ∞. In some sense, this is a nice isometry, since it does not map
any regular point to infinity nor infinity to any regular point. Now, since f(∞) = ∞ and
f(P ) = Q, f must send the line through P and ∞ to the line through Q and ∞. This
means that the vertical line at x = a is sent to the vertical line at x = c. Thus, f(a) = c.
This now means that we have to have

(w, c + di; c,∞) = (z, a + bi; a,∞)

w − c

di
=

z − a

bi

w =
d(z − a)

b
+ c

=

[

d bc − ad
0 b

]

z.

Since b > 0 and d > 0, then the determinant of this matrix is positive. That and the fact
that all of the entries are real means that it is an element of PSL2(R) and is an isometry of
the Poincaré upper half plane.

We claim that this map that we have chosen is a translation. Now, a translations has
no fixed points. How do we show that this map has no fixed points? A fixed point would
be a point z0 so that f(z0) = z0. If this is the case, then solve for z below:

d(z0 − a)

b
+ c = z0

z0 =
ad − bc

d − b

But, note that a, b, c, and d are all real numbers. Thus, if b 6= d then z0 is a real number
and is not in the upper half plane. Thus, this map has no fixed points in H 2 and is a
translation. If b = d, then z0 = ∞, and again there are no solutions in the upper half plane,
so the map is a translation.

In the Poincaré upper half plane, we can classify our translations by how many fixed
points there are on the line at infinity (that is, in R

⋃∞.) Let

γ =

[

a b
c d

]

.

Then γ(z) = z if
cz2 + (d − a)z − b = 0.

Now, if c 6= 0, then this is a quadratic equation with discriminant

∆ = (d − a)2 − 4bc.
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Thus, there is a fixed point in H 2 if ∆ < 0, and no fixed points if ∆ ≥ 0. If ∆ = 0 then
there is exactly one fixed point on the line at infinity. In this case the translation is called
a parabolic translation. If ∆ > 0 the translation is called a hyperbolic translation.

10.8 Rotations

What are the rotations in the Poincaré upper half plane? What fractional linear transfor-
mations represent rotations?

A rotation will fix only one point. Let P = a + bi. We want to find the rotation that
fixes P and rotates counterclockwise through an angle of θ.

First, find the (Euclidean) line through P which makes an angle θ with the vertical line
through P . Find the perpendicular to this line, and find where it intersects the x-axis. The
circle centered at this intersection and through P is the image of the vertical line under the
rotation. Let this circle intersect the x-axis at points M and N . Then the rotation is given
by

(w,P ;N,M) = (z, P ; a,∞).

We want to find an easy point to rotate, then we can do this in general. It turns out
that the simplest case is to rotate about P = i.

r
1

x

θ

M N

P=i

Here let the center of the half cir-
cle be at −x, and let the (Euclidean)
radius of the circle be r. Then x =
r cos θ, r sin θ = 1, M = −r−x, and
N = r − x. So we have to solve

(w, i; r − x,−r − x) = (z, i; 0,∞).

After quite a bit of algebraic manip-
ulation, we get

w = ρθz =

[

cos θ
2 sin θ

2

sin θ
2 cos θ

2

]

z

For an arbitrary point P = a + bi we need to apply a translation that sends P to i and
then apply the rotation, and then translate back. The translation from P = a + bi to 0 + i
is

γ =

[

1 −a
0 b

]

.

The inverse translation is

γ−1 =

[

b a
0 1

]

.

Thus, the rotation about P is

γ−1ρθγ =

[

b a
0 1

] [

cos θ
2 sin θ

2

sin θ
2 cos θ

2

] [

1 −a
0 b

]

=

[

b cos θ
2 − a sin θ

2 (a2 + b2) sin θ
2

− sin θ
2 a sin θ

2 + b cos θ
2

]
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10.9 Reflections

We have not yet described all of the isometries of the Poincaré upper half plane. We did
see that the reflection through the imaginary axis is given by

R0(x, y) = (−x, y),

which is expressed in complex coordinates as

R0(z) = −z.

Note that in terms of a matrix representation, we can represent R0(z) by

R0(z) = µz =

[

−1 0
0 1

]

z

Now, to reflect through the line ℓ in H 2, first use the appropriate isometry, γ1 to move
the line ℓ to the imaginary axis, then reflect and move the imaginary axis back to ℓ:

γ−1
1 µγ1z = γ−1

1 µγ1z.

Note that µ2 = 1 and that µγµ ∈ SL2(R) for all γ ∈ SL2(R), since detµ = −1. Therefore,

γ−1
1 µγ1z = γ−1

1 (µγ1µ)µz = γ2µz = γ2(−z),

where γ2 ∈ SL2(R). Thus, every reflection can be written in the form γ(−z) for some
γ ∈ SL2(R).

Theorem 10.4 Every isometry f of H which is not direct can be written in the form

f(z) = γ(−z)

for some γ ∈ SL2(R). Furthermore, if

γ =

[

a b
c d

]

then f(z) is a reflection if and only if a = d.

10.10 Distance and Lengths

We want a formula for the distance between two points or the length of any line segment.
We know this for two points on the same vertical line: if P = a + bi and Q = a + ci, then

|PQ| =

∣

∣

∣

∣

∫ c

b

dy

y

∣

∣

∣

∣

= | log(c/b)|

Now, what will happen if P and Q don’t lie on a vertical line segment. Then there is a
half circle with center on the x-axis which goes through both P and Q. Let this half circle
have endpoints M and N . Since isometries preserve distance, we will look at the image of
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σ which sends P to i and PQ to a vertical line. This is the transformation that sends P to
i, M to 0 and N to ∞. Since the image of Q will lie on this line, Q is sent to some point
0 + ci for some c. Then

|PQ| = | log(c/1)| = | log(c)|.

Note that

(σz, i; 0,∞) = (z, P ;M,N)

and in particular, since σ(Q) = ci and (σz, i; 0,∞) =
σz

i
, we get

c = (Q,P ;M,N),

so

|PQ| = | log(Q,P ;M,N)|.

10.11 The Area of Triangles

Let’s compute the area of a doubly asymptotic triangle. We want to compute the area of
the doubly asymptotic triangle with vertices at P = ei(π−θ) in H , and vertices at infinity
of 1 and ∞. The angle at P for this doubly asymptotic triangle has measure θ. Consider
Figure 10.2.

The area element for the Poincaré upper half plane model is derived by taking a small
(Euclidean) rectangle with sides oriented horizontally and vertically. The sides approxi-
mate hyperbolic segments, since the rectangle is very small. The area would then be a
product of the height and width (measured with the hyperbolic arclength element). The
vertical sides of the rectangle have Euclidean length ∆y, and since y is essentially un-

changed, the hyperbolic length is
∆y

y
. The horizontal sides have Euclidean length ∆x

and hence hyperbolic length
∆x

y
. This means that the area element is given by

dxdy

y2
.

- cos θ

θ

θ

0 1

P

Figure 10.2: Doubly Asymptotic Triangle

Lemma 10.10 The area of a
doubly asymptotic triangle PΩΘ
with points Ω and Θ at infinity
and with angle ΩPΘ = P has
area

|△PΩΘ| = π − P,

where P is measured in radians.

Proof: Let the angle at P have
measure θ. Then △PΩΘ is sim-
ilar to the triangle in Figure 10.2

and is hence congruent to it. Thus, they have the same area. The area of the triangle in
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Figure 10.2 is given by

A(θ) =

∫ 1

− cos θ

∫ ∞

√
1−x2

1

y2
dxdy

=

∫ 1

− cos θ

dx√
1 − x2

= arccos(−x)|1− cos θ = π − θ

Corollary 4 The area of a trebly asymptotic triangle is π.

P

ΘΩ Σ

Figure 10.3: Trebly Asymptotic Triangle

Proof: : Let △ΩΘΣ be a trebly asymptotic triangle, and let P be a point in the interior.
Then

|△ΩΘΣ| = |△PΩΣ| + |△PΘΣ|+ |△PΩΘ|
= (π − ∠ΩPΣ) + (π − ∠ΘPΣ) + (π − ∠ΩPΘ)

= 3π − 2π = π

Corollary 5 Let △ABC be a triangle in H with angle measures A, B, and C. Then the
area of △ABC is

|△ABC| = π − (A + B + C),

where the angles are measured in radians.

In the figure below, the figure on the left is just an abstract picture from the hyperbolic
plane. The figure on the right comes from the Poincaré model, H .

Proof: Construct the triangle △ABC and continue the sides as rays AB, BC, and CA.
Let these approach the ideal points Ω, Θ, and Σ, respectively. Now, construct the common
parallels ΩΘ, ΘΣ, and ΣΩ. These form a trebly asymptotic triangle whose area is π. Thus,

|△ABC| = π − |△AΣΩ| − |△BΩΘ| − |△CΘΣ|
= π − (π − (π − A)) − (π − (π − B)) − (π − (π − C))

= π − (A + B + C).
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A

B

C

Ω

Θ

Σ

B

A

C

ΘΩ Σ

10.12 Connection to the Poincaré Disk Model

Consider the fractional linear transformation in matrix form

φ =

[

1 −i
−i 1

]

or

w =
z − i

1 − iz
.

This map sends 0 to −i, 1 to 1, and ∞ to i. This map sends the upper half plane to the
interior of the unit disk. The image of H under this map is the Poincaré disk model, D .

Under this map lines and circles perpendicular to the real line are sent to circles which
are perpendicular to the boundary of D . Thus, hyperbolic lines in the Poincaré disk model
are the portions of Euclidean circles in D which are perpendicular to the boundary of D .

There are several ways to deal with points in this model. We can express points in terms
of polar coordinates:

D = {reiθ | 0 ≤ r < 1}.

We can show that the arclength segment is

ds =
2
√

dr2 + r2dθ2

1 − r2
.

The group of proper isometries in D has a description similar to the description on H .
It is the group

Γ =

{

γ ∈ SL2(C) | γ =

[

a b

b a

]}

All improper isometries of D can be written in the form γ(−z) where γ ∈ Γ.

Lemma 10.11 If dp(O,B) = x, then

d(O,B) =
ex − 1

ex + 1
.
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Proof: If Ω and Λ are the ends of the diameter through OB then

x = log(O,B; Ω,Λ)

ex =
OΩ · BΛ

OΛ · BΩ

=
BΛ

BΩ
=

1 + OB

1 − OB

OB =
ex + 1

ex − 1

which is what was to be proven.

10.13 Angle of Parallelism

Let Π(d) denote the radian measure of the angle of parallelism corresponding to the hyper-
bolic distance d. We can define the standard trigonometric functions, not as before—using
right triangles—but in a standard way. Define

sin x =

∞
∑

n=0

(−1)n
x2n+1

(2n + 1)!
(10.1)

cos x =
∞
∑

n=0

(−1)n
x2n

(2n)!
(10.2)

tan x =
sin x

cos x
. (10.3)

In this way we have avoided the problem of the lack of similarity in triangles, the premise
upon which all of real Euclidean trigonometry is based. What we have done is to define these
functions analytically, in terms of a power series expansion. These functions are defined for
all real numbers x and satisfy the usual properties of the trigonometric functions.

Theorem 10.5 (Bolyai-Lobachevskii Theorem) In the Poincaré model of hyperbolic
geometry the angle of parallelism satisfies the equation

e−ρ = tan

(

Π(ρ)

2

)

.

Proof: By the definition of the angle of parallelism, d = dp(P,Q) for some point P to its
foot Q in some p-line ℓ. Now, Π(d) is half of the radian measure of the fan angle at P , or
is the radian measure of ∠QPΩ, where PΩ is the limiting parallel ray to ℓ through P .

We may choose ℓ to be a diameter of the unit disk and Q = O, the center of the disk,
so that P lies on a diameter of the disk perpendicular to ℓ.

The limiting parallel ray through P is the arc of a circle δ so that

(i) δ is orthogonal to Γ,

1. ℓ is tangent to δ at Ω.
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α α

Ω Q Λ

P

α α

Q

Ω Λ

P

Figure 10.4: Angle of Parallelism: left in D , right in H

The tangent line to δ at P must meet ℓ at a point R inside the disk. Now ∠QPΩ =
∠QΩP = β radians. Let us denote Π(d) = α. Then in △PQΩ, α + 2β = π

2 or

β =
π

4
− α

2
.

Now, d(P,Q) = r tan β = r tan
(

π
4 − α

2

)

. Applying Lemma 10.11 we have

ed =
r + d(P,Q)

r − d(P,Q)
=

1 + tan β

1 − tan β
.

Using the identity tan(π
4 − α

2 ) =
1 − tan α/2

1 + tan α/2
it follows that

ed =
1

tan α/2
.

Simplifying this it becomes

e−d = tan

(

Π(d)

2

)

.

Also, we can write this as Π(d) = 2 arctan(e−d).
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