

MATH 6118

Collinearity

There are three kinds of mathematicians

- those who can count and those who can't.

Circumcenter

Centroid

Orthocenter

Incenter

The 4 Centers so far

The Euler Segment

The circumcenter O, the centroid G, and the orthocenter H are collinear. Furthermore, G lies between O and H and

$$
\frac{G H}{O G}=2
$$

The Euler Segment

Proof 1: (Symmetric Triangles)
Extend $O G$ twice its length to a point P, that is $G P=20 G$. We need to show that P is the orthocenter.

Draw the median, $A L$, where L is the midpoint of $B C$. Then, $G P=2 O G$ and $A G=2 G L$ and by vertical angles we have that $\angle A G H \cong \angle L G O$

Then $\triangle A H G \sim \triangle L O G$
 and OL is parallel to AP. Since OL is perpendicular to $B C$, so it $A P$, making P lie on the altitude from A. Repeating this for each of the other vertices gives us our result. By construction GP $=20 G$.

The Pedal Triangle

Let P be any point not on the triangle and drop perpendiculars P to the (extended) sides. The three points form the vertices The pedal triangle associated with P.

The Pedal Triangle from the Circumcircle

Let P be on the circumcircle. What does its pedal triangle look like?

The Simson Line

X, Y, and Z seem collinear? Are they, and are they always?

The Simson Line

Theorem: The feet of the perpendiculars from a point to the sides of a triangle are collinear if and only if the point lies on the circumcircle.

The Simson Line

Proof: First, assume that P is on the circumcircle. WLOG we can assume that P is on arc AC that does not contain B and P is at least as far from C as it is from A. If necessary you can relabel the points to make this so.

The Simson Line

P lies on the
circumcircle of triangle $\triangle Y B X$ because $\Varangle \mathrm{PYB}=90=\Varangle$ PXB. This makes \square PXBY a cyclic quadrilateral by 3.2.5 2(b) since opposite angles add up to 180.
(Likewise P lies on the circumcircle of $\triangle \mathrm{YZC}$ and $\triangle A Z X$.)

The Simson Line

$$
\begin{aligned}
\Varangle A P C & =180-\Varangle B \\
& =\Varangle X P Y
\end{aligned}
$$

The Simson Line

Now, subtract \Varangle APY and we get that $\Varangle Y P C=\Varangle X P A$. Now, Y, C, P and Z are concyclic

$$
\Varangle Y P C=\Varangle Y Z C .
$$

Therefore,

$$
\Varangle Y Z C=\Varangle X Z A
$$

making the points collinear.

The Gergonne Point

Let D, E, F be the points where the inscribed circle touches the sides of the triangle $A B C$. Then the lines
$A D, B E$ and $C F$
intersect at one point.

The Gergonne Point

$$
\begin{aligned}
& A F=A E \\
& B F=B D \\
& C D=C E
\end{aligned}
$$

because they are external tangents ${ }^{t}$ to a circle.
So $\frac{A F}{F B} \cdot \frac{B D}{C D} \cdot \frac{C E}{A E}=\frac{A F}{A E} \cdot \frac{B D}{B F} \cdot \frac{C E}{C D}=1$
By Ceva's Theorem they are concurrent.

The Lemoine Point

The symmedians of a triangle are the reflections of medians across the associated angle bisectors.

The Lemoine Point

The symmedians $A s_{a}, B S_{b}$, and CS_{c} intersect in a point called the Lemoine point.

Proof: We will make use of two ways to find the area of a triangle:
$K=\frac{1}{2} a b \sin C$
$K=\frac{1}{2} c h_{c}$

$L=$ Lemoine Point

The Lemoine Point

The symmedians $A s_{a}, B S_{b}$, and CS_{c} intersect in a point called the Lemoine point.

Proof: We will make use of two ways to find the area of a triangle:
$K=\frac{1}{2} a b \sin C$
$K=\frac{1}{2} c h_{c}$

$L=$ Lemoine Point

The Lemoine Point

 $\frac{B S_{a}}{C M} \cdot \frac{B M_{a}}{C S}=\frac{A B^{2}}{A C^{2}} \quad$ Or, since $B m_{a}=C M_{a}$

$$
\frac{B S_{o}}{C S_{a}}=\frac{A B^{2}}{A C^{2}}
$$

The Lemoine Point

Similarly,

$$
\frac{C S_{b}}{A S_{b}}=\frac{B C^{2}}{A B^{2}} \text { and } \frac{A S_{c}}{B S_{c}}=\frac{A C^{2}}{B C^{2}}
$$

Multiply these together and
Ceva's Theorem gives us that they
 are concurrent

$$
\frac{B S_{a}}{C S_{a}} \frac{A S_{c}}{B S_{c}} \frac{C S_{b}}{A S_{b}}=\frac{A B^{2}}{A C^{2}} \frac{A C^{2}}{B C^{2}} \frac{B C^{2}}{A B^{2}}=1
$$

The Fermat Point

Given $\triangle A B C$ construct equilateral triangles on each side. Call the nontriangle vertices A^{\prime}, B^{\prime}, and C^{\prime}. The lines $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ are concurrent. This point is the Fermat point and has a number of nice properties.

1. The 3 angles between F and each of the vertices are each 120 , so it is the equiangular point of the triangle.
2. The Fermat point minimizes sum of the distances to the vertices.

The Nagel Point

Let X_{a} be the point of tangency of side $B C$ and the excircle with center I_{a}. Similarly define points X_{b} and X_{c} on sides $A C$ and $A B$. Then three lines $A X_{a}, B X_{b}$ and $C X_{c}$ are concurrent at a point called the Nagel point.

The Nagel Point

X_{a} has the unique property of being the point on the perimeter that is exactly half way around the triangle from A.

$$
A B+B X_{a}=A C+C X_{a}
$$

If p denotes the
 semiperimeter, then
$B X_{a}=p-A B=p-c$ and $C X_{a}=p-A C=p-b$
$\frac{B X_{a}}{C X_{a}}=\frac{p-c}{p-b}$

The Nagel Point

Doing this for the other two points gives:
$\frac{C X_{b}}{A X_{b}}=\frac{p-a}{p-c}$
$\frac{A X_{c}}{B X_{c}}=\frac{p-b}{p-a}$

Applying Ceva's Theorem gives us the result.

The Spieker Point

Let M_{a}, M_{b}, M_{c} denote the midpoints of sides $B C, A C$, and $A B$, respectively. The triangle $\triangle M_{a} M_{b} M_{c}$ is called the medial triangle to $\triangle A B C$. Let Sp denote the incenter of the medial triangle. Sp is called the Spieker point of $\triangle A B C$.

The Nagel Segment

1. The incenter (I), the Nagel point (N), the centroid (G) and the Spieker point (Sp) are collinear.
2. The Spieker point is the midpoint of the Nagel segment.
3. The centroid is one-third of the way from the incenter to the Nagel point.

Miquel's Theorem

If P, Q, and R are on $B C, A C$, and $A B$ respectively, then the three circles determined by a vertex and the two points on the adjacent sides meet at a point called the Miquel point. c

Miquel's Theorem

Let $\triangle A B C$ be our triangle and let P, Q, and R be the points on the sides of the triangle. Construct the circles of the theorem. Consider two of the circles, C_{1} and C_{2}, that pass through P. They intersect at P, so they must intersect at a second point, call it G.
In circle C_{2} $\Varangle Q G P+\Varangle Q A P=180$
In circle C_{1}
$\Varangle R G P+\Varangle R B P=180$

Miquel's Theorem

$$
\measuredangle Q G P+\measuredangle Q G R+\measuredangle R G P=360
$$

$(180-\measuredangle A)+\measuredangle Q G R+(180-\measuredangle B)=360$

$$
\begin{aligned}
\measuredangle Q G R & =\measuredangle A+\measuredangle B \\
& =180-\measuredangle C
\end{aligned}
$$

Thus, $\Varangle Q G R$ and $\Varangle C$ are supplementary and so Q, G, R, and C are concyclic. These circle then intersect in one point.

Morley's Theorem

The adjacent trisectors of the angles of a triangle are concurrent by pairs at the vertices of an equilateral triangle.

Menelaus's Theorem

The three points P, Q, and R one the sides $A C, A B$, and $B C$, respectively, of $\triangle A B C$ are collinear if and only if $\frac{A Q}{Q B} \cdot \frac{B R}{R C} \cdot \frac{C P}{P A}=-1$

Menelaus's Theorem

Assume P, Q, and R are collinear.
From the vertices drop perpendiculars to the line. $\triangle C H_{c} R \sim \triangle B H_{b} R, \triangle C H_{c} P \sim \triangle A H_{a} P, \triangle A H_{a} Q \sim \triangle B H_{b} Q$.
Therefore
$B R / C R=B H_{b} / \mathrm{CH}_{c}$,
$C P / A P=C H_{c} / A H_{a}$,
$A Q / B Q=A H_{a} / B H_{b}$.
Therefore,
$\frac{A Q}{Q B} \cdot \frac{B R}{R C} \cdot \frac{C P}{P A}=\frac{A H_{a}}{B H_{b}} \cdot \frac{B H_{b}}{C H_{c}} \cdot \frac{C H_{c}}{A H_{a}}=1$
$B R / R C$ is a negative ratio if we take direction into account. This gives us our negative.

Menelaus's Theorem

For the reverse implication, assume that we have three points such that $A Q / Q B \cdot B R / R C \cdot C P / P A=1$. Assume that the points are not collinear. Pick up any two. Say P and Q. Draw the line PQ and find its intersection R^{\prime} with $B C$. Then
$A Q / Q B \cdot B R^{\prime} / R^{\prime} C \cdot C P / P A=1$.
Therefore $B R^{\prime} / R^{\prime} C=B R / R C$, from which $R^{\prime}=R$.

