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MATH 6118

Rules of the Game

Everyone is a fool for at least five 
i t   d  WISDOM i t  f t minutes a day; WISDOM consists of not 

exceeding the limit
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The Power of Deduction
Theorem: There exist two irrational numbers a and b so 

that ab is rational.
We know that  √2 is irrational. Consider the number

A is either rational or irrational.  If it is rational, we 
 d   S   th t it i  i ti l  L t b  √2  

2
a 2=

are done.  So assume that it is irrational. Let b = √2. 
Then

which is clearly rational.
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All power corrupts, but 
 till d l t i itwe still need electricity.
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Absolute Power Corrupts Absolutely
Theorem: Every triangle is 

isosceles.
Given ∆ABC with AC ∫ BC.
1. Construct the bisector 

of �C.  Call it l. l is not 
perpendicular to AB

C

perpendicular to AB.
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Every Triangle is Isosceles
Theorem: Every triangle is 

isosceles.
Given ∆ABC with AC ∫ BC.
1. Construct the bisector 

of �C.  Call it l. l is not 
perpendicular to AB

C

perpendicular to AB.
2. Construct the 

perpendicular bisector 
of AB. Call it m, and let 
D = AB � m
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Every Triangle is Isosceles
Theorem: Every triangle is 

isosceles.
Given ∆ABC with AC ∫ BC.
1. Construct the bisector 

of �C.  Call it l. l is not 
perpendicular to AB

C

perpendicular to AB.
2. Construct the 

perpendicular bisector 
of AB. Call it m, and let 
D = AB � m.

3. l � m ∫ �. Call it P.
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P
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Every Triangle is Isosceles
1. Construct the bisector 

of �C.  Call it l. l is not 
perpendicular to AB.

2. Construct the 
perpendicular bisector 
of AB  Call it m  and let 

C

of AB. Call it m, and let 
D = AB � m.

3. l � m ∫ �. Call it P.
4. Drop a perpendicular 

from P to BC and from 
P to AC.
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Every Triangle is Isosceles
1. Construct the bisector 

of �C.  Call it l. l is not 
perpendicular to AB.

2. Construct the 
perpendicular bisector 
of AB  Call it m  and let 

C

of AB. Call it m, and let 
D = AB � m.

3. l � m ∫ �. Call it P.
4. Drop a perpendicular 

from P to BC and from 
P to AC.

5. �ACP � � BCP.
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Every Triangle is Isosceles
2. Construct the 

perpendicular bisector 
of AB. Call it m, and let 
D = AB � m.

3. l � m ∫ �. Call it P.
4 Drop a perpendicular 

C

4. Drop a perpendicular 
from P to BC and from 
P to AC.

5. �ACP � � BCP.
6. �CEP � � CFP, as 

they are both right 
angles..
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Every Triangle is Isosceles
2. Construct the 

perpendicular bisector 
of AB. Call it m, and let 
D = AB � m.

3. l � m ∫ �. Call it P.
4 Drop a perpendicular 

C

4. Drop a perpendicular 
from P to BC and from 
P to AC.

5. �ACP � � BCP.
6. �CEP � � CFP.
7. ∆CEP � ∆CFP by AAS. 
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Every Triangle is Isosceles
3. l � m ∫ �. Call it P.
4. Drop a perpendicular 

from P to BC and from 
P to AC.

5. �ACP � � BCP.
6 �CEP � CFP

C

6. �CEP � � CFP.
7. ∆CEP � ∆CFP.
8. EP � FP and CE � CF 

by CPCTC. 
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Every Triangle is Isosceles
3. l � m ∫ �. Call it P.
4. Drop a perpendicular 

from P to BC and from 
P to AC.

5. �ACP � � BCP.
6 �CEP � CFP

C

6. �CEP � � CFP.
7. ∆CEP � ∆CFP.
8. EP � FP and CE � CF. 
9. �AEP � � BFP as 

they are both right 
angles.
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Every Triangle is Isosceles
3. l � m ∫ �. Call it P.
4. Drop a perpendicular 

from P to BC and from 
P to AC.

5. �ACP � � BCP.
6 �CEP � CFP

C

6. �CEP � � CFP.
7. ∆CEP � ∆CFP.
8. EP � FP and CE � CF. 
9. �AEP � � BFP.
10. CLAIM: EA � FB.

28-Jan-2008 MATH 6118 14

E

P

D

A

B

F

Every Triangle is Isosceles
10. EA � FB.

i. Suppose EA > BF.
ii. There is a point A’ on 

EA, different from A so 
that EA’ � FB and 
�A’EP is a right angle. 

iii �AA’P i  bt  b  th  

C

iii. �AA’P is obtuse by the 
Exterior Angle Theorem

iv. ∆FPB � ∆EPA’ by SAS
v. PA’ � PB
vi. PA’ � PA
vii. This contradicts 

assumption so EA � FB 
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Every Triangle is Isosceles
4. Drop a perpendicular 

from P to BC and from P 
to AC.

5. �ACP � � BCP.
6. �CEP � � CFP.
7. ∆CEP � ∆CFP.
8. EP � FP and CE � CF. 

C

9. �AEP � � BFP.
10. EA � FB.
11. AC � BC since CE � CF 

and EA � AC = CE and FB 
� BC = CF

Therefore ∆ABC is 
isosceles
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What is wrong with this “proof”?
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Corruption II
Every right angle has 
the same measure as 
an obtuse angle.
Proof: Construct rectangle 
ABCD and choose a point E 

  h  l   

BA

E

not on the rectangle so 
that AD � CD.
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Corruption II
Every right angle has 
the same measure as 
an obtuse angle.
Proof: Construct rectangle 
ABCD and choose a point E 

  h  l   

BA

E

not on the rectangle so 
that AD � CD. 
Let l be the perpendicular 
bisector of AE.
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CD

Corruption II
Every right angle has 
the same measure as 
an obtuse angle.
Proof: Construct rectangle 
ABCD and choose a point E 

  h  l   

BA

E

not on the rectangle so 
that AD � CD. 
Let l be the perpendicular 
bisector of AE.
Let m be the perpendicular 
bisector of CD.
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CD

Corruption II
Proof: Construct rectangle 
ABCD and choose a point E 
not on the rectangle so 
that AD � CD. 
Let l be the perpendicular 
bisector of AE

M

BA

E

bisector of AE.
Let m be the perpendicular 
bisector of CD.
Let P = l � m. Let M 
denote the midpoint of AE 
and N denote the midpoint 
of CD
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Corruption II
Let l be the perpendicular 
bisector of AE.
Let m be the perpendicular 
bisector of CD.
Let P = l � m. Let M 
denote the midpoint of AE 

M

BA

E

denote the midpoint of AE 
and N denote the midpoint 
of CD.
Construct segments DP, 
EP, AP, and CP.
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P

N

CD

Corruption II
Let m be the perpendicular 
bisector of CD.
Let P = l � m. Let M 
denote the midpoint of AE 
and N denote the midpoint 
of CD

M

BA

E

of CD.
Construct segments DP, 
EP, AP, and CP.
1. AP � EP
2. DP � CP
3. AD � CE by 

construction
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P

N

CD

Corruption II
1. AP � EP
2. DP � CP
3. AD � CE
4. ∆ECP � ∆ADP by SSS
5. �ECP � � ADP

M

BA

E

6. ∆DNP � ∆CNP by SSS 
7. �DCP � � CDP
8. �ECP = �ADP + �ECD 

and 
�ADP = �CDP + �ADC

9. �ECD � �ADC
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Corruption II
3. AD � CE
4. ∆ECP � ∆ADP by SSS
5. �ECP � � ADP
6. ∆DNP � ∆CNP by SSS 
7. �DCP � � CDP

M

BA

E

8. �ECP = �ADP + �ECD 
and 
�ADP = �CDP + �ADC

9. �ECD � �ADC
10. �ECD > � BCD and is 

obtuse.
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Corruption II
5. �ECP � � ADP
6. ∆DNP � ∆CNP by SSS 
7. �DCP � � CDP
8. �ECP = �ADP + �ECD 

and 

M

BA

E

�ADP = �CDP + �ADC
9. �ECD � �ADC
10. �ECD > � BCD and is 

obtuse.
11. �ACD is a right angle
12. By #9 we are done.
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P

N

CD

What is wrong with this “proof”?
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Nothing is impossible for anyone 
impervious to reason.
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Axiom Systems
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Euclid’s Axioms
Let the following be postulated
1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines make the 

interior angles on the same side less than two right angles, the 
t  st i ht li s  if p d d i d fi it l  m t  th t sid  two straight lines, if produced indefinitely, meet on that side 
on which are the angles less than two right angles. (Euclid’s 
Parallel Postulate)
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Euclid’s Common Notions
1. Things that are equal to the same thing are also equal to one 

another.
2. It equals be added to equals, the wholes are equal.
3. If equals be subtracted from equals, the remainders are equal.
4. Things which coincide with one another are equal to one 

another.
5. The whole is greater than the part.
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Euclid’s Axioms – Modern Version
1. For every point P and every point Q not equal to P 

there exists a unique line that passes through P and 
Q.
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P
Q

Euclid’s Axioms – Modern Version
1. For every point P and every point Q not equal to P there exists 

a unique line that passes through P and Q.
2. For every segment AB and every segment CD there exists a 

unique point E on line AB such that B is between A and E and 
segment CD is congruent to BE.
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A B

C D

E



2/5/2008

12

Euclid’s Axioms – Modern Version
1. For every point P and every point Q not equal to P there exists 

a unique line that passes through P and Q.
2. For every segment AB and every segment CD there exists a 

unique point E on line AB such that B is between A and E and 
segment CD is congruent to BE.

3. For every point O and every point A not equal to O there is a 
circle with center O and radius OA.
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AO

Euclid’s Axioms – Modern Version
1. For every point P and every point Q not equal to P there exists 

a unique line that passes through P and Q.
2. For every segment AB and every segment CD there exists a 

unique point E on line AB such that B is between A and E and 
segment CD is congruent to BE.

3. For every point O and every point A not equal to O there is a 
circle with center O and radius OA.

4. All right angles are congruent to one another.4. All right angles are congruent to one another.
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Euclid’s Axioms – Modern Version
1. For every point P and every point Q not equal to P there exists 

a unique line that passes through P and Q.
2. For every segment AB and every segment CD there exists a 

unique point E on line AB such that B is between A and E and 
segment CD is congruent to BE.

3. For every point O and every point A not equal to O there is a 
circle with center O and radius OA.

4. All right angles are congruent to one another.4. All right angles are congruent to one another.
5. For every line l and for every point P not on l there exists a 

unique line m through P that is parallel to l. (Playfair’s
Postulate)
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Euclid’s Axioms – Problems therein
1. How do we know points exist?  It is never stated in any 

postulate.
2. Euclid takes betweenness and line separation for granted, 

never stating the properties that he uses in any axioms or 
postulates.

3. The proof that Euclid gives for SAS is faulty. He assumes that 
certain motions are possible without affirming them in 
postulates or axioms. p

4. Euclid assumes all of the continuity properties that he needs 
for granted. For example, he assumes that if two circles are 
sufficiently close then they have to intersect in two points.
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Alternative Axiom Systems
Tarski’s Axioms: 
http://education.uncc.edu/droyster/courses/Spring08/axioms/Tarski.htm
(PDF file)
Hilbert’s Axioms: 
http://education.uncc.edu/droyster/courses/Spring08/axioms/Hilbert.htm
(PDF file)
Birkoff’s Axioms: 
http://education.uncc.edu/droyster/courses/Spring08/axioms/Birkhoff.htmp // . . / y / / p g / m / ff. m
(PDF file)
SMSG Axioms: 
http://education.uncc.edu/droyster/courses/Spring08/axioms/SMSG.htm
(PDF file)
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SMSG Axiom System
Undefined Terms:
Point, line, plane
• Postulate 1. (Line Uniqueness) Given any two distinct points there is 

exactly one line that contains them. 
• Postulate 2. (Distance Postulate) To every pair of distinct points 

there corresponds a unique positive number. This number is called the 
distance between the two points. 

• Postulate 3. (Ruler Postulate) The points of a line can be placed in a 
correspondence with the real numbers such that: 

• To every point of the line there corresponds exactly one real number. To every point of the line there corresponds exactly one real number. 
• To every real number there corresponds exactly one point of the line. 
• The distance between two distinct points is the absolute value of the 

difference of the corresponding real numbers. 
• Postulate 4. (Ruler Placement Postulate) Given two points P and Q of a 

line, the coordinate system can be chosen in such a way that the 
coordinate of P is zero and the coordinate of Q is positive. 

• Postulate 5. (Existence of Points) 
• Every plane contains at least three non-collinear points. 
• Space contains at least four non-coplanar points. 

28-Jan-2008 MATH 6118 39
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SMSG Axiom System
• Postulate 6. (Points on a Line Lie in a Plane) If two points lie in a 

plane, then the line containing these points lies in the same plane. 
• Postulate 7. (Plane Uniqueness) Any three points lie in at least one 

plane, and any three non-collinear points lie in exactly one plane. 
• Postulate 8. (Plane Intersection) If two planes intersect, then 

that intersection is a line. 
• Definition: A set of points is convex if whenever two points are in 

the set the line segment containing the two points is in the set.the set the line segment containing the two points is in the set.
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SMSG Axiom System
• Postulate 9. (Plane Separation Postulate) Given a line and a plane 

containing it, the points of the plane that do not lie on the line 
form two sets such that: 

– each of the sets is convex; 
– if P is in one set and Q is in the other, then segment PQ intersects the line. 

• Postulate 10. (Space Separation Postulate) The points of space 
that do not lie in a given plane form two sets such that: 

– Each of the sets is convex. 
– If P is in one set and Q is in the other, then segment PQ intersects the plane. 

• Postulate 11. (Angle Measurement Postulate) To every angle there 
corresponds a real number between 0° and 180°. 

• Postulate 12. (Angle Construction Postulate) Let       be a ray on 
the edge of the half-plane H. For every r between 0 and 180, 
there is exactly one ray       with P in H such that                   . 
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∠PAB=rm
AB

AP

SMSG Axiom System
• Postulate 13. (Angle Addition Postulate) If D is a point in the 

interior of           , then 
• Postulate 14. (Supplement Postulate) If two angles form a linear 

pair, then they are supplementary. 
• Postulate 15. (SAS Postulate) Given a one-to-one correspondence 

between two triangles (or between a triangle and itself). If two 
sides and the included angle of the first triangle are congruent to 
the corresponding parts of the second triangle, then the 

∠BAC ∠ = ∠ + ∠m BAC m BAD m DAC

p g p g
correspondence is a congruence. 

• Postulate 16. (Parallel Postulate) Through a given external point 
there is at most one line parallel to a given line. 

• Postulate 17. (Area of Polygonal Region) To every polygonal region 
there corresponds a unique positive real number called the area. 

• Postulate 18. (Area of Congruent Triangles) If two triangles are 
congruent, then the triangular regions have the same area. 
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SMSG Axiom System
• Postulate 19. (Summation of Areas of Regions) Suppose that the 

region R is the union of two regions R1 and R2. If R1 and R2
intersect at most in a finite number of segments and points, then 
the area of R is the sum of the areas of R1 and R2. 

• Postulate 20. (Area of a Rectangle) The area of a rectangle is the 
product of the length of its base and the length of its altitude. 

• Postulate 21. (Volume of Rectangular Parallelpiped) The volume of 
a rectangular parallelpiped is equal to the product of the length of g p p p q p g
its altitude and the area of its base. 

• Postulate 22. (Cavalieri's Principle) Given two solids and a plane. If 
for every plane that intersects the solids and is parallel to the 
given plane the two intersections determine regions that have the 
same area, then the two solids have the same volume. 
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Euclidean Geometry
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Advanced Euclidean Geometry

Triangles and their Centers
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What is the CENTER of a 
triangle?

What if it is not equilateral?
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Circumcenter

N C
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O

M
P

A

B

Centroid

G

A

C
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Orthocenter

A

C
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H

B

Incenter

I
A

C
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B

The 4 Centers so far

O

G
I

A

C
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Ceva’s Theorem
Let P be a point and let ABC be any triangle. 
The rays from each of the vertices and 
intersecting opposite sides are called the 
cevians of the triangle with respect to P.
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M

L

N

B C

A

P

Ceva’s Theorem
The three line containing the vertices A, B, and 
C of ABC and intersecting opposite sides at 
points L, M, and N, respectively, are concurrent 
if and only if

AN BL CM
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AN BL CM 1NB MALC =i i

M

L

N

B C

A

P

Ceva’s Theorem

K( ABL) BL
LCK( ACL)

Δ =
ΔM

L

N

B C

A

P
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M

L

N

B C

A

P

K( PBL) BL
LCK( PCL)

Δ =
Δ
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Ceva’s Theorem

M

L

N

B C

A

P
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K( ABP)
K( ACP)

BL K( ABL) K( PBL)
LC K( ACL) K( PCL)= =

Δ
Δ

Δ − Δ
Δ − Δ

LB

Ceva’s Theorem

M

L

N

B C

A

P
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K( BCP)
K( AP)

CM K( BMC) K( PMC)
MA K( BMA) K( PMA) B= =

Δ
Δ

Δ − Δ
Δ − Δ

LB

Ceva’s Theorem

M

L

N

B C

A

P

28-Jan-2008 MATH 6118 57

K( ACP)
K( BCP)

AN K( ACN) K( APN)
NB K( BCN) K( BPN)= =

Δ
Δ

Δ − Δ
Δ − Δ

L
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Ceva’s Theorem

1AN BL CM K( ACP) K( ABP) K( BCP)
NB MALC K( BCP) K( ACP) K( ABP)= =

Δ Δ Δ
Δ Δ Δ

i i i i
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Ceva’s Theorem

1AN BL CM
NB MALC =i i

Now assume that

ALet BM and AL 
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M

L

N

B C

P

N'

intersect at P and 
construct CP 
intersecting AB at 
N’, N’ different 
from N.

Ceva’s Theorem
Then AL, BM, and CN’ are concurrent and 

AN' BL CM 1
N'B LC MA

=i i
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From our hypothesis it follows that

So N and N’ must coincide.

AN' AN
N'B NB

=
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Medians & Centroid
The medians intersect at a common point G.
Proof: Since L, M, and N are midpoints, we have 
that AN=NB, BL=LC, and CM=MA. Therefore,

AN BL CM AN BL CM
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AN BL CM AN BL CM 1
NB LC MA AN BL CM

= =i i i i

Altitudes & Orthocenter
The altitudes intersect at a common point O.

AN ACANC ~ AMB
MA AB

BL AB

Δ Δ ⇒ =
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BL ABBLA ~ BNC
NB BC
CM BCCMB ~ CLA
LC AC

AN BL CM AC AB BC 1
MA NB LC AB BC AC

Δ Δ ⇒ =

Δ Δ ⇒ =

= =i i i i

Angle Bisectors & Incenter
The angle bisectors intersect at a common point I.

AB BL
AC LC
BC CM
BA AM

=

=
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BA AM
CA AN
CB BN

AN BL CM AB BC CA 1
MA NB LC AC BA CB

=

= =i i i i
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Inradius & Area
If the inradius is r and the semiperimeter is s.

K( ABC) rs=

28-Jan-2008 MATH 6118 64

Heron’s Formula
By External Tangents Theorem AZ=AY, BZ=BX, 
BV=BT, CX=CY, and CU=CT.

U

Let
x = BX
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X
Y

Z

T

U

V

E

I

C

A B

y = CY
z = AZ
u = CU
v = BV

Heron’s Formula
1. x + y + z = s, the semiperimeter.

Proof: 
2x + 2y + 2z = BX + BZ + CY + CX + AZ + AY = p

U
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Heron’s Formula
2.  x = s - b

Proof: 
b = AC = y + z = s – x and we are done.

U
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X
Y

Z

T

U

V

E

I

C

A B

Similarly
y = s – c
z = s - a

Heron’s Formula
3. u + v = x + y

Proof: 
u + v = CU + BV = CT + BT = CX + BX 

= CY + BX = x + y.

U
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X
Y

Z

T

U

V

E

I

C

A B

Heron’s Formula
4. x + z + v = y + z + u

Proof: 
x + z + v = (s – b) + (s – a) + v = c + v = AV
y + z + u = (s – c) + (s – a) + u = b + u = AU

U
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X
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AV = AU
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Heron’s Formula
5. u = x and v = y.

Proof: 
u + v = x + y so x + v = y + u or x – y = u – v. Solving 
those equations gives us u = x and v = y.

U
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Heron’s Formula
6. AV = s.

Proof: 

U

AV = AB + BV
= AZ + ZB + BV
= z + x + v
= x + y + z = s
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Heron’s Formula
7. EV/s = r/(s - a).

Proof: 

U

Note that ∆EVA ~ ∆IZA
So EV/AV = IZ/AZ

EV/s = r/z = r/(s – a)
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Heron’s Formula
8. �ZBI + �EBV = 90 .

Proof: �ZBI + �IBX + �XBE + �EBV = 180
�ZBI = �IBX  and �XBE = �EBV, so

�ZBI + �EBV = 90          
U N t  th  th t 
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Note then that 
∆ZBI ~ ∆VEB

Heron’s Formula
9. (s – b)/r = EV/(s – c) .

Proof: This follows directly from the similarity.

U
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Heron’s Formula
10.

Proof:
K( ABC) s(s-a)(s-b)(s-c)=

K = sr
= EV(s – a)

EV = (s – b)(s – c)/r
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K = (s – a)(s – b)(s – c)/r
K = [(s – a)(s – b)(s – c)]/[K/s]
K = [s(s – a)(s – b)(s – c)]/K
K2 = s(s – a)(s – b)(s – c)


