
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Everyone is a fool for at least five minutes a day; WISDOM consists of not exceeding the limit
\qquad

Every Triangle is Isosceles

Theorem: Every triangle is isosceles.
Given $\triangle A B C$ with $A C \neq B C$.

1. Construct the bisector of $\angle C$. Call it I. I is not perpendicular to $A B$
2. Construct the perpendicular bisector of $A B$. Call it m, and let $D=A B \cap m$
3. $I \cap m \neq \varnothing$. Call it P

Every Triangle is Isosceles

\qquad

1. Construct the bisector of $\angle C$. Call it I. I is no \dagger perpendicular to $A B$
2. Construct the
perpendicular bisector of $A B$. Call it m, and let $D=A B \cap m$.
3. $I \cap m \neq \varnothing$. Call it P.
4. Drop a perpendicular from P to $B C$ and from P to $A C$.

28-Jan-2008

Every Triangle is Isosceles

\qquad

1. Construct the bisector of $\angle C$. Call it I. I is not perpendicular to $A B$.
2. Construct the perpendicular bisector of $A B$. Call it m, and let $D=A B \cap m$.
3. $I \cap m \neq \varnothing$. Call it P.
4. Drop a perpendicular from P to $B C$ and from P to $A C$.
5. $\angle A C P \cong \angle B C P$.

[^0]MATH 6118

Every Triangle is Isosceles

2. Construct the perpendicular bisector of $A B$. Call it m, and le \dagger $D=A B \cap m$.
3. $I \cap m \neq \varnothing$. Call it P.
4. Drop a perpendicular from P to $B C$ and from P to $A C$.
5. $\angle A C P \cong \angle B C P$.
6. $\angle C E P \cong \angle C F P$, as they are both right angles..

Every Triangle is Isosceles

\qquad
2. Construct the perpendicular bisector of $A B$. Call it m, and let $D=A B \cap m$.
3. $I \cap m \neq \varnothing$. Call it P.
4. Drop a perpendicular from P to $B C$ and from P to $A C$.
5. $\angle A C P \cong \angle B C P$.
6. $\angle C E P \cong \angle C F P$.
7. $\triangle C E P \cong \triangle C F P$ by $A A S$.

28-Jan-2008
MATH 6118
${ }^{11}$

Every Triangle is Isosceles

\qquad
3. $I \cap m \neq \varnothing$. Call it P.
4. Drop a perpendicular from P to $B C$ and from P to $A C$.
5. $\angle A C P \cong \angle B C P$.
6. $\angle C E P \cong \angle C F P$.
7. $\triangle C E P \cong \triangle C F P$.
8. $E P \cong F P$ and $C E \cong C F$ by CPCTC.

\qquad

Every Triangle is Isosceles

3. $I \cap m \neq \varnothing$. Call it P.
4. Drop a perpendicular from P to $B C$ and from P to $A C$.
5. $\angle A C P \cong \angle B C P$.
6. $\angle C E P \cong \angle C F P$.
7. $\triangle C E P \cong \triangle C F P$.
8. $E P \cong F P$ and $C E \cong C F$.
9. $\angle A E P \cong \angle B F P$ as they are both right angles.

Every Triangle is Isosceles

\qquad
3. I $\cap m \neq \varnothing$. Call it P.
4. Drop a perpendicular from P to $B C$ and from P to $A C$.
5. $\angle A C P \cong \angle B C P$.
6. $\angle C E P \cong \angle C F P$.
7. $\triangle C E P \cong \triangle C F P$.
8. $E P \cong F P$ and $C E \cong C F$.
9. $\angle A E P \cong \angle B F P$.
10. CLAIM: $E A \cong F B$.

28-Jan-2008
MATH 6118

Every Triangle is Isosceles

\qquad
10. $E A \cong F B$.
i. Suppose $E A>B F$.
ii. There is a point A^{\prime} on $E A$, different from A so that $E A^{\prime} \cong F B$ and $\angle A^{\prime} E P$ is a right angle.
iii. $\angle A A^{\prime} P$ is obtuse by the Exterior Angle Theorem $\triangle F P B \cong \triangle E P A^{\prime}$ by $S A S$
v. $P A^{\prime} \cong P B$
vi. $P A^{\prime} \cong P A$
vii. This contradicts assumption so $E A \cong F B$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Every Triangle is Isosceles

4. Drop a perpendicular
from P to $B C$ and from P
to $A C$.
5. $\angle A C P \cong \angle B C P$.
6. $\angle C E P \cong \angle C F P$.
7. $\triangle C E P \cong \triangle C F P$.
8. $E P \cong F P$ and $C E \cong C F$
9. $\angle A E P \cong \angle B F P$.
10. $E A \cong F B$.
11. $A C \cong B C$ since $C E \cong C F$ and $E A \cup A C=C E$ and $F B$ $\cup B C=C F$
Therefore $\triangle A B C$ is isosceles

28-Jan-2008
MATH 6118
16

\qquad
\qquad
\qquad

Corruption II

\qquad
Every right angle has
the same measure as an obtuse angle.
Proof: Construct rectangle $A B C D$ and choose a point E not on the rectangle so that $A D \cong C D$.

Corruption II	
Every right angle has the same measure as an obtuse angle.	
Proof: Construct rectangle ABCD and choose a point E not on the rectangle so that $A D \cong C D$.	
Let I be the perpendicular bisector of $A E$.	c
28.5 Jan 2008 M ${ }^{\text {a }}$	19

Corruption II
5. $\angle E C P \cong \angle A D P$
6. $\triangle \mathrm{DNP} \cong \triangle C N P$ by SSS
7. $\angle D C P \cong \angle C D P$
8. $\angle E C P=\angle A D P+\angle E C D$
and
$\angle A D P=\angle C D P+\angle A D C$
9. $\angle E C D \cong \angle A D C$
10. $\angle E C D>\angle B C D$ and is
obtuse.
11. $\angle A C D$ is a right angle
12. By $\# 9$ we are done.
28.Jon-2008

Euclid's Axioms

Let the following be postulated

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than two right angles. (Euclid's Parallel Postulate)
\qquad

28-Jan-2008
MATH 6118 30

Euclid's Common Notions

1. Things that are equal to the same thing are also equal to one another.
2. It equals be added to equals, the wholes are equal.
3. If equals be subtracted from equals, the remainders are equal.
4. Things which coincide with one another are equal to one another.
5. The whole is greater than the part.

Euclid's Axioms - Modern Version

1. For every point P and every point Q not equal to P there exists a unique line that passes through P and Q.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

28-Jan-2008
MATH 6118

Euclid's Axioms - Modern Version

1. For every point P and every point Q not equal to P there exists a unique line that passes through P and Q.
2. For every segment $A B$ and every segment $C D$ there exists a unique point E on line $A B$ such that B is between A and E and segment $C D$ is congruent to $B E$.

28-Jan-2008
MATH 6118

Euclid's Axioms - Modern Version

1. For every point P and every point Q not equal to P there exists a unique line that passes through P and Q.
2. For every segment $A B$ and every segment $C D$ there exists a unique point E on line $A B$ such that B is between A and E and segment $C D$ is congruent to $B E$.
3. For every point O and every point A not equal to O there is a circle with center O and radius $O A$.

MATH 6118

Euclid's Axioms - Modern Version

1. For every point P and every point Q not equal to P there exists a unique line that passes through P and Q.
2. For every segment $A B$ and every segment $C D$ there exists a unique point E on line $A B$ such that B is between A and E and segment $C D$ is congruent to $B E$.
3. For every point O and every point A not equal to O there is a circle with center O and radius $O A$.
4. All right angles are congruent to one another.

Euclid's Axioms - Modern Version

1. For every point P and every point Q not equal to P there exists a unique line that passes through P and Q.
2. For every segment $A B$ and every segment $C D$ there exists a unique point E on line $A B$ such that B is between A and E and segment $C D$ is congruent to $B E$.
3. For every point O and every point A not equal to O there is a circle with center O and radius $O A$.
4. All right angles are congruent to one another.
5. For every line I and for every point P not on I there exists a unique line m through P that is parallel to I. (Playfair's Postulate)

Euclid's Axioms - Problems therein

1. How do we know points exist? It is never stated in any postulate.
2. Euclid takes betweenness and line separation for granted, never stating the properties that he uses in any axioms or postulates.
3. The proof that Euclid gives for SAS is faulty. He assumes that certain motions are possible without affirming them in postulates or axioms.
4. Euclid assumes all of the continuity properties that he needs for granted. For example, he assumes that if two circles are sufficiently close then they have to intersect in two points.

Alternative Axiom Systems
Tarski's Axioms:
http://education.uncc.edu/droyster/courses/Spring08/axioms/Tarski.htm
(PDF file)
Hilbert's Axioms:
http://education.uncc.edu/droyster/courses/Spring08/axioms/Hilbert.htm
(PDF file)
Birkoff's Axioms:
http://education.uncc.edu/droyster/courses/Spring08/axioms/Birkhoff.htm (PDF file) SMSG Axioms: http://education.uncc.edu/droyster/courses/Spring08/axioms/SMSG.htm (PDF file) 28-Jan-2008

SMSG Axiom System

Undefined Terms
 Point, line, plane

- Postulate 1. (Line Uniqueness) Given any two distinct points there is exactly one line that contains them.
- Postulate 2. (Distance Postulate) To every pair of distinct points there corresponds a unique positive number. This number is called the distance between the two points.
- Postulate 3. (Ruler Postulate) The points of a line can be placed in a correspondence with the real numbers such that
- To every point of the line there corresponds exactly one real number.
- To every real number there corresponds exactly one point of the line.
- The distance between two distinct points is the absolute value of the difference of the corresponding real numbers.
- Postulate 4. (Ruler Placement Postulate) Given two points P and Q of a line, the coordinate system can be chosen in such a way that the coordinate of P is zero and the coordinate of Q is positive.
- Postulate 5. (Existence of Points)
- Every plane contains at least three non-collinear points.
- Space contains at least four non-coplanar points.
\qquad
\qquad
\qquad
\qquad
\qquad

28-Jan-2008
MATH 6118 39

SMSG Axiom System

- Postulate 6. (Points on a Line Lie in a Plane) If two points lie in a plane, then the line containing these points lies in the same plane.
- Postulate 7. (Plane Uniqueness) Any three points lie in at least one plane, and any three non-collinear points lie in exactly one plane
- Postulate 8. (Plane Intersection) If two planes intersect, then that intersection is a line.
- Definition: A set of points is convex if whenever two points are in the set the line segment containing the two points is in the set.

SMSG Axiom System

- Postulate 9. (Plane Separation Postulate) Given a line and a plane containing it, the points of the plane that do not lie on the line form two sets such that:
- each of the sets is convex:
- if P is in one set and Q is in the other, then segment $P Q$ intersects the line.
- Postulate 10. (Space Separation Postulate) The points of space that do not lie in a given plane form two sets such that:
- Each of the sets is convex.
- If P is in one set and Q is in the other, then segment $P Q$ intersects the plane.
- Postulate 11. (Angle Measurement Postulate) To every angle there corresponds a real number between 0° and 180°.
- Postulate 12. (Angle Construction Postulate) Let $\overrightarrow{A B}$ be a ray on the edge of the half-plane H. For every r between 0 and 180, there is exactly one ray $A P$ with P in H such that $m \angle P A B=r$.

28-Jan-2008
MATH 6118

SMSG Axiom System

- Postulate 13. (Angle Addition Postulate) If D is a point in the interior of $\angle B A C$, then $m \angle B A C=m \angle B A D+m \angle D A C$
- Postulate 14. (Supplement Postulate) If two angles form a linear pair, then they are supplementary.
- Postulate 15. (SAS Postulate) Given a one-to-one correspondence between two triangles (or between a triangle and itself). If two sides and the included angle of the first triangle are congruent to the corresponding parts of the second triangle, then the correspondence is a congruence.
- Postulate 16. (Paralle/ Postulate) Through a given external point there is at most one line parallel to a given line.
- Postulate 17. (Area of Polygonal Region) To every polygonal region there corresponds a unique positive real number called the area.
- Postulate 18. (Area of Congruent Triangles) If two triangles are congruent, then the triangular regions have the same area.

28-Jan-2008
MATH 6118
42

SMSG Axiom System

- Postulate 19. (Summation of Areas of Regions) Suppose that the region R is the union of two regions R_{1} and R_{2}. If R_{1} and R_{2} intersect at most in a finite number of segments and points, then the area of R is the sum of the areas of R_{1} and R_{2}.
- Postulate 20. (Area of a Rectangle) The area of a rectangle is the product of the length of its base and the length of its altitude.
- Postulate 21. (Volume of Rectangular Parallelpiped) The volume of a rectangular parallelpiped is equal to the product of the length of its altitude and the area of its base.
- Postulate 22. (Cavalieri's Principle) Given two solids and a plane. If for every plane that intersects the solids and is parallel to the given plane the two intersections determine regions that have the same area, then the two solids have the same volume.

43

Euclidean Geometry

Advanced Euclidean Geometry

Triangles and their Centers

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The 4 Centers so far \qquad

Ceva's Theorem

Let P be a point and let $\triangle A B C$ be any triangle. \qquad The rays from each of the vertices and intersecting opposite sides are called the \qquad cevians of the triangle with respect to P.

Ceva's Theorem

\qquad

The three line containing the vertices A, B, and \qquad C of $\triangle A B C$ and intersecting opposite sides at points L, M, and N, respectively, are concurrent \qquad if and only if

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
$A N \cdot B L \cdot C M=K(\triangle A C P) \cdot K(\triangle A B P) \cdot K(\Delta B C P)=$
$N B^{\circ}{ }^{\circ} C^{\cdot} \cdot M A=\frac{K}{K(\triangle B C P)}{ }^{\circ}(\triangle A C P)^{\cdot} \cdot \bar{K}(\triangle A B P)=1$ \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ceva's Theorem

\qquad
\qquad
\qquad

$$
\frac{A N^{\prime}}{N^{\prime} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=1}
$$

From our hypothesis it follows that \qquad
$\frac{A N^{\prime}}{N^{\prime} B}=\frac{A N}{N B}$
\qquad
So N and N^{\prime} must coincide.

28-Jan-2008
MATH 6118 60

Medians \& Centroid

The medians intersect at a common point G.
Proof: Since L, M, and N are midpoints, we have that $A N=N B, B L=L C$, and $C M=M A$. Therefore,
\qquad
$\frac{A N}{N B} \cdot \frac{B L}{L C} \cdot \frac{C M}{M A}=\frac{A N}{A N} \cdot \frac{B L}{B L} \cdot \frac{C M}{C M}=1$

Altitudes \& Orthocenter

\qquad
\qquad
\qquad

$$
\triangle A N C \sim \triangle A M B \Rightarrow \frac{A N}{M A}=\frac{A C}{A B}
$$

$$
\triangle B L A \sim \triangle B N C \Rightarrow \frac{B L}{N B}=\frac{A B}{B C}
$$

\qquad

$$
\Delta C M B \sim \triangle C L A \Rightarrow \frac{C M}{L C}=\frac{B C}{A C}
$$

$$
\frac{A N}{M A} \cdot \frac{B L}{N B} \cdot \frac{C M}{L C}=\frac{A C}{A B} \cdot \frac{A B}{B C} \cdot \frac{B C}{A C}=1
$$

\qquad

Angle Bisectors \& Incenter

The angle bisectors intersect at a common point I. \qquad
$\frac{A B}{A C}=\frac{B L}{L C}$
$\frac{B C}{B A}=\frac{C M}{A M}$
$\frac{B C}{B A}=\frac{C M}{A M}$
$C A=\frac{A N}{B N}$
$\overline{C B}=\overline{B N}$
$A N \cdot B L \cdot C M=A B \cdot B C \cdot C A=1$
$\overline{M A} \cdot \overline{N B} \cdot \overline{L C}=\frac{\overline{A C}}{B A} \cdot \overline{C B}=1$

Inradius \& Area

If the inradius is r and the semiperimeter is s. \qquad $k(\triangle A B C)=r s$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Heron's Formula

1. $x+y+z=s$, the semiperimeter. \qquad
Proof:
$2 x+2 y+2 z=B X+B Z+C Y+C X+A Z+A Y=p$ \qquad

\qquad
\qquad
\qquad

28-Jan-2008
MATH 6118 66

\qquad

Heron's Formula

8. $\angle Z B I+\angle E B V=90$.

Proof: $\angle Z B I+\angle I B X+\angle X B E+\angle E B V=180$
$\angle Z B I=\angle I B X$ and $\angle X B E=\angle E B V$, so $\angle Z B I+\angle E B V=90$ Note then that $\Delta Z B I \sim \Delta V E B$ \qquad
\qquad
\qquad

Heron's Formula

9. $(s-b) / r=E V /(s-c)$.

Proof: This follows directly from the similarity.

\qquad
\qquad
\qquad

28-Jan-2008
MATH 6118

Heron's Formula

10. $K(\triangle A B C)=\sqrt{s(s-a)(s-b)(s-c)}$ \qquad
Proof: $K=s r$
$=E V(s-a)$ \qquad
$E V=(s-b)(s-c) / r$
$K=(s-a)(s-b)(s-c) / r$
$K=[(s-a)(s-b)(s-c)] /[K / s]$
$K=[s(s-a)(s-b)(s-c)] / K$
$K^{2}=s(s-a)(s-b)(s-c)$

28-Jan-2008
MATH 6118 75
\qquad
\qquad
\qquad
\qquad

[^0]: 28-Jan-2008

