MATH 6118

Neutral Geometry

\qquad
\qquad

Axioms

1. (Existence Axiom) The collection of all points forms a nonempty set. There is more than one point in that set.
2. (Incidence Axiom) Every line is a set of points. For every pair of distinct points A and B there is exactly one line l containing A and B .

Definition: Two lines l and m are parallel \qquad if they do not intersect.
Theorem: If l and m are two distinct, \qquad non-parallel lines, then there is exactly one point P that lies on both l and m. \qquad Proof:

Distance

\qquad
Axiom 3: (Ruler Axiom) For every pair of \qquad points P and Q there is a real number $d(P, Q)$. For each line l there is a 1-1 correspondence from l to R so that P and Q correspond to x, y (real numbers) then $d(P, Q)=|x-y|$.

Definitions

Definition: C is between A and $B, A^{*} B^{\star} C$, \qquad if C lies on the line $A B$ and

$$
d(A, C)+d(C, B)=d(A, B)
$$

\qquad
Definition: C is between A and $B, A^{*} B^{*} C$, \qquad if C lies on the line $A B$ and

$$
d(A, C)+d(C, B)=d(A, B)
$$

\qquad
$A B=\{A, B\} \cup\{P \mid A * B * C\}$ $\overrightarrow{A B}=A B \cup\{P \mid A * B * P\}$

11-Feb-2008 MATH 6118

Definitions

\qquad
Definition: The length of segment $A B$ is \qquad $d(A, B)$. Two segments are congruent if they have the same length.
Theorem: If P and Q are any points, then

$$
\begin{aligned}
& d(P, Q)=d(Q, P) \\
& d(P, Q) \geq 0 \\
& d(P, Q)=0 \Leftrightarrow P=Q
\end{aligned}
$$

Plane Separation

Axiom: For every line l the points that do not lie on l form two disjoint nonempty sets $\left(H_{1}\right.$ and $\left.H_{2}\right)$ so that:
i) H_{1} and H_{2} are convex;
ii) If P is in H_{1} and Q is in H_{2} then $P Q$ intersects l.

Definition

For a line l and external points A, B
A and B are on the same side if $A B$ does not intersect l. A and B are on opposite sides of l if $A B$ does intersect l.
An angle is the union of two nonopposite rays sharing the same endpoint.
The interior of the angle is the intersection of two half planes.

Definition

\qquad
If A, B, C are non-collinear points, the \qquad triangle $A B C$ is the union of the three segments $A B, B C$, and $A C$.

Pasch's Theorem

\qquad
Let $\triangle A B C$ be a triangle and l a line so that none of A, B, and C are on l. If l intersects $A B$, then l intersects either $A C$ or $B C$.
Proof:

Angle Measure

Axiom: (Protractor Axiom) For every angle $B A C$ there is a number $m(B A C)$ so that:
i) $0 \leq m(B A C) \leq 180$,
ii) $m(B A C)=0$ iff $A B=A C$,
iii) you can construct an angle of measure r on either side of a line:
iv) if $A D$ is between $A B$ and $A C$

$$
m(B A D)+m(D A C)=m(B A C)
$$

Betweenness

Coordinate function: a 1-1 correspondence
\qquad
\qquad $f: \ell \rightarrow R$ so that $d(P, Q)=|f(P)-f(Q)|$.
Theorem: If A, B, C lie on l, then C is between A and B iff $f(A)<f(C)<f(B)$ or $f(A)>f(C)>f(B)$.
Lemma: If A, B, C on l the exactly one of them lies between the other two.

Betweenness

Theorem: Let l be a line and A, D on l. If B and E on opposite sides of l then rays $A B$ and $D E$ do not intersect.

Betweenness

Theorem: Each angle has a unique bisector.
Crossbar Theorem: Given $\triangle A B C$, let D be in the interior of angle $B A C$. Then ray $A D$ must intersect $B C$.

Triangle Congruency

Definition: Two triangles are congruent if \qquad there is a 1-1 correspondence between the vertices so that the corresponding \qquad sides are congruent and corresponding angles are congruent.
SAS Axiom: Given $\triangle A B C$ and $\triangle D E F$ so that $A B \approx D E, B C \approx E F$, and $A B C \approx D E F$, then $\triangle A B C \approx \triangle D E F$.

Neutral Geometry Results

Theorem: (ASA) Given $\triangle A B C$ and $\triangle D E F$ so \qquad that $C A B \approx F D E, A B \approx D E$, and $A B C \approx$ $D E F$, then $\triangle A B C \approx \triangle D E F$.

Theorem: In $\triangle A B C$ if $A B C \approx A C B$, then $A B \approx D E$.

Neutral Geometry Results

Theorem: (Existence of Perpendiculars) Given line l and P not on l, there exists a line m through P that is perpendicular to l.

Alternate Interior Angles

Theorem: (Alternate Interior Angles \qquad
Theorem) If two lines are cut by a transversal so that there is a pair of \qquad congruent alternate interior angles, then the two lines are parallel.

Existence of Parallel Lines

Theorem: If m and n are distinct lines both perpendicular to l, then m and n are parallel.

Uniqueness of Perpendiculars

Theorem: If P is not on l, then the perpendicular dropped from P to l is unique.

Exterior Angle Theorem

\qquad
Theorem: An exterior angle of a triangle \qquad is greater than either remote interior angle.

Angle Angle Side Criterion

\qquad
Theorem: Given $\triangle A B C$ and $\triangle D E F$ so that \qquad $A C \approx D F, B A C \approx E D F$, and $A B C \approx D E F$, then $\triangle A B C \approx \triangle D E F$.

Hypotenuse Leg Criterion

Theorem: Two right triangles are congruent if the hypotenuse and leg of one are congruent respectively to the hypotenuse and leg of the other.

Side-Side-Side Criterion

\qquad
Theorem: Given $\triangle A B C$ and $\triangle D E F$ so that \qquad $A C \approx D F, A B \approx D E$, and $B C \approx E F$, then $\triangle A B C \approx \triangle D E F$.

Saccheri-Legendre Theorem

Lemma: The sum of the measures of any two angles of a triangle is less than 180.
Lemma: If A, B, and C are non-collinear, then $|A C|<|A B|+|B C|$

Saccheri-Legendre Theorem

Theorem: (Saccheri-Legendre) The sum of the angles I any triangle is less than or equal to 180.
Lemma: If A, B, and C are non-collinear, then $|A C|<|A B|+|B C|$

```
Defect of a Triangle
Definition: The defect of a triangle }\triangleAB is the number:
defect(\triangleABC)=180-(m(A)+m(B)+m(C))
Theorem: (Additivity of Defect) Let \(\triangle A B C\) be any triangle and \(D\) lie on \(A B\), then:
\[
\operatorname{def}(\triangle A B C)=\operatorname{def}(\triangle A C D)+\operatorname{def}(\triangle B C D)
\]
```

\qquad
\qquad
\qquad
\qquad
\qquad

Quality of Defect

Theorem:

a) If there exists a triangle of defect 0 , then a rectangle exists.
b) I a rectangle exists, then every triangle has defect 0 .

Quality of Defect

Path of Proof
$\triangle A B C$ has defect $0 \rightarrow$ there is a righ \dagger triangle with defect $0 \rightarrow$ we can construct a rectangle \rightarrow we can construct arbitrarily large rectangles \rightarrow all right triangles have defect $0 \rightarrow$ all triangles have defect 0
\qquad
\qquad
\qquad
\qquad
\qquad

Positive Defect

\qquad
Corollary: If there is a triangle with \qquad positive defect then all triangles have positive defect.

