Exercise Set \#7

1. What is the distance between the points $4+i / 2$ and $4+5 i$ in the Poincaré upper half plane, H ?
2. What is the distance between the points $-2+2 i$ and $-2+7 i$ in the Poincare upper half plane, H ?
3. Prove that the dilation $\delta_{\lambda}(x, y)=(\lambda x, \lambda y)$ preserves the Poincaré arclength element.
4. Let $P=4+4 i$ and $Q=5+3 i$. Find M and N, the endpoints of the Poincaré line through P and Q.
5. Let $P=12 i$ and $Q=7+5 i$. Find M and N, the endpoints of the Poincaré line through P and Q.
6. In the upper half plane model, H, carefully draw the asymptotic triangle with vertices $i, 1+i$ and 1. Is the map

$$
\gamma=\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]
$$

an isometry of H ? In the same diagram, carefully draw the image of the asymptotic triangle under the action of γ.
7. In the upper half plane model, H , carefully draw the asymptotic triangle with vertices i,
$-1+i$, and $1+i$. In the same diagram, carefully draw the image of this triangle under the isometry

$$
\gamma=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] .
$$

8. Let $P=\frac{8+i}{13}, Q=\frac{13+i}{20}$, and $\gamma=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$. What are γP and γQ ? Sketch P, Q and their images. Is γ an isometry? Why? Use all of this information to find the distance between P and Q in H .
9. Let $P=2+4 i$ and $Q=\frac{6+4 i}{3}$ be two points in the upper half plane, H. Let

$$
\gamma=\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right] .
$$

What are γP and γQ ? What is the Poincaré distance from P to Q in H .
10. Suppose that T is a fractional linear transformation such that $T(1)=1, T(0)=0$, and $T(\infty)=\infty$. Prove that T is the identity map. That is, show that $T(z)=z$ for all z.

