HOMEWORK IV **MATH 527** SPRING 2011

BERTRAND GUILLOU

Problem 1. (i) Show that if $E \xrightarrow{p} B$ is a fibration and Z is any space, then Map $(Z, E) \longrightarrow$ Map(Z, B) is also a fibration.

(ii) Show that if $A \xrightarrow{j} X$ is a cofibration and Z is any space, then $Map(X, Z) \longrightarrow Map(A, Z)$ is a fibration.

(iii) Show that if $A \xrightarrow{j} X$ is a cofibration and $E \xrightarrow{p} B$ is a fibration, then the natural map

$$\operatorname{Map}(X, E) \longrightarrow \operatorname{Map}(A, E) \times_{\operatorname{Map}(A, B)} \operatorname{Map}(X, B)$$

is a fibration.

a fibration. **Hint:** The key is to show that one can find a lift in a diagram of the form $M(j) \longrightarrow E \cdot \bigvee_{\downarrow} \psi$

$$X \times I \longrightarrow B$$

This can be done by establishing that the inclusion $M(j) \hookrightarrow X \times I$ is a retract of the inclusion $i_0: X \times I \hookrightarrow (X \times I) \times I$. One argument for the latter fact is as follows.

We have previously shown that if $j: A \longrightarrow X$ is a cofibration, then the inclusion $M(j) \hookrightarrow X \times I$ admits a retraction $r: X \times I \longrightarrow M(j)$. This can be improved: define a homotopy $h: X \times I \times I \longrightarrow M(j)$. $X \times I$ by the formula

$$h(x,t,s) = (r_1(x,t(1-s)), st + (1-s)r_2(x,t))$$

 $(r_1 \text{ and } r_2 \text{ are the two components of the map } r)$. Then h defines a homotopy from r to the identity, rel M(j). Thus M(j) is a deformation retract of $X \times I$.

By Theorem 6.4 of [May], there is a continuous $u: X \longrightarrow I$ such that $u^{-1}(0) = A$. Define $v: X \times I \longrightarrow I$ by $v(x,t) = t \cdot u(x)$, and note that $v^{-1}(0) = M(j)$. Define now a new homotopy $\Phi: X \times I \times I \longrightarrow X \times I$ by

$$\Phi(x,t,s) = \begin{cases} h(x,t,s \cdot v(x,t)^{-1}) & s < v(x,t) \\ h(x,t,1) = (x,t) & s \ge v(x,t) \end{cases}$$

(you should convince yourself that Φ is continuous). Finally, define $\Lambda: X \times I \longrightarrow X \times I \times I$ by $\Lambda(x,t) = (x,t,v(x,t))$. Check that the following diagram is a retract diagram

$$\begin{array}{c} M(j) \longrightarrow X \times I \xrightarrow{r} M(j) \\ \downarrow & \downarrow^{i_0} & \downarrow \\ X \times I \xrightarrow{\Lambda} X \times I \times I \xrightarrow{\Phi} X \times I. \end{array}$$

Problem 2. (The Hopf invariant) Let $k \geq 2$ and let $f: S^{2k-1} \longrightarrow S^k$ be a map. Then the cofiber C(f) has a natural CW structure with cells in dimensions 0, k, and 2k. As $k \ge 2$, the cellular chain complex has trivial differentials, and the cohomology of C(f) is \mathbb{Z} in dimensions 0, k, and 2k. Let x be the generator of $\mathrm{H}^{k}(C(f))$ corresponding to the top cell of S^{k} , and let y be the

Date: March 15, 2011.

generator of $\mathrm{H}^{2k}(C(f))$ corresponding to the cell attached via f. Then $x^2 = h(f)y$ for some integer h(f), which is called the **Hopf invariant** of the map f.

(i) Show that if k is odd, then h(f) = 0.

(ii) Let $\eta: S^3 \longrightarrow S^2$ be the Hopf map. Show that $h(\eta) = 1$. (iii) Let k = 2n and let $\iota: S^{2n} \longrightarrow S^{2n}$ be the identity map. Show that the Whitehead product $[\iota, \iota] \in \pi_{4n-1}(S^{2n})$ has Hopf invariant 2. (Hint: Use the diagram

to compute $h([\iota, \iota])$.

By part (iii) and the fact that the Hopf invariant is a homomorphism (see Hatcher, 4B.1), for each n, the map $h: \pi_{4n-1}(S^{2n}) \longrightarrow \mathbb{Z}$ is either surjective or has image 2 \mathbb{Z} . In either case, we have a surjective homomorphism from $\pi_{4n-1}(S^{2n})$ onto an infinite cyclic group, and such a map always has a section. We conclude that $\pi_{4n-1}(S^{2n})$ always has a summand of \mathbb{Z} . J. P. Serre proved that the complement is finite and that every other homotopy group of spheres is finite. Frank Adams proved that maps of Hopf invariant one exist only for k = 2n = 2, 4, or 8 (examples are the Hopf maps η , ν , and σ).

Problem 3. Let $\eta \in \pi_3(S^2)$ be the Hopf map and let $\iota \in \pi_2(S^2)$ be correspond to the identity of S^2 . Show that for any integers $a, b \in \mathbb{Z}$ we have

$$(a\iota)\circ(b\eta)=a^2b\eta$$

This shows that the map $\pi_2(S^2) \longrightarrow \pi_3(S^2)$ induced by precomposition with η is not a homomorphism.

Hint: Consider a commutative diagram

and the Hopf invariants.