HOMEWORK V MATH 527 SPRING 2011

BERTRAND GUILLOU

Problem 1. (i) Let $p: E \longrightarrow X$ be the universal cover. Show that, for $n \ge 2$, the action of $\pi_1(X)$ on $\pi_n(X) \cong \pi_n(E)$ corresponds to the action of deck transformations on E.

(ii) Show that $\pi_1(\mathbb{RP}^n)$ acts trivially on $\pi_n(\mathbb{RP}^n)$ if and only if n is odd.

Problem 2. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be a fiber sequence of connected spaces.

(i) Construct an action of $\pi_1(E)$ on the higher homotopy groups of the fiber F. Hint: given $\alpha \in \pi_n(F)$ and $\gamma \in \pi_1(E)$, consider $p_*(\gamma \cdot i_*(\alpha)) \in \pi_n(B)$.

(ii) Find an example in which E is simple, but F is not. (You should be able to find an example in which $\pi_1(F)$ is not abelian.)

Problem 3. Let X be a based space, let $n \ge 0$, and let A be any abelian group. Show that there is a weak equivalence

$$\operatorname{Map}_{*}(X, K(A, n)) \simeq \prod_{0 \le i \le n} K(\tilde{\operatorname{H}}^{i}(X; A), n - i).$$

Problem 4. Determine the second Postnikov section $P_2(\Omega S^2)$. Show that each $P_n(\Omega S^2)$ is equivalent to a product $S^1 \times Y_n$, and describe the space Y_n . Show, however, that ΩS^2 is not a Generalized Eilenberg-Mac Lane space (GEM).