CLASS NOTES
 MATH 527 (SPRING 2011) WEEK 1

BERTRAND GUILLOU

1. Wed, Jan. 19

What is homotopy theory?

- classical homotopy theory
- simplicial homotopy (Goerss-Jardine)
- abstract homotopy theory (Quillen, Hovey, Dwyer-Spalinski)
- homological algebra
- stable homotopy theory
- equivariant homotopy theory

The first part of the course will be concerned with classical homotopy theory.
Definition 1.1. Given maps f and $g: X \longrightarrow Y$, a homotopy h between f and g is a map $h: X \times I \longrightarrow Y(I=[0,1])$ such that $f(x)=h(x, 0)$ and $g(x)=h(x, 1)$. We say f and g are homotopic if there exists a homotopy between them (and write $h: f \simeq g$).
Proposition 1.2. The property of being homotopic defines an equivalence relation on the set of maps $X \longrightarrow Y$.
Proof. (Reflexive): Need to show $f \simeq f$. Use the constant homotopy defined by $h(x, t)=f(x)$ for all t.
(Symmetric): If $h: f \simeq g$, need a homotopy from g to f. Define $H(x, t)=h(x, 1-t)$ (reverse time).
(Transitive): If $h_{1}: f_{1} \simeq f_{2}$ and $h_{2}: f_{2} \simeq f_{3}$, we define a new homotopy h from f_{1} to f_{3} by the formula

$$
h(x, t)=\left\{\begin{array}{cc}
h_{1}(x, 2 t) & 0 \leq t \leq 1 / 2 \\
h_{2}(x, 2 t-1) & 1 / 2 \leq t \leq 2 .
\end{array}\right.
$$

We write $[X, Y]$ for the set of homotopy classes of maps $X \longrightarrow Y$.
Proposition 1.3. (Interaction of composition and homotopy) Suppose given maps $X \xrightarrow{f} Y \xrightarrow{g} Z$. If $f \simeq f^{\prime}$ and $g \simeq g^{\prime}$ then $g \circ f \simeq g^{\prime} \circ f^{\prime}$.

We will often choose to work with based spaces, that is, spaces X with a specified basepoint $x_{0} \in X$. A based map $f:\left(X, x_{0}\right) \longrightarrow\left(Y, y_{0}\right)$ is simply a map such that $f\left(x_{0}\right)=y_{0}$. There is a corresponding notion of homotopy between based maps. A based homotopy $h: f \simeq g$ between based maps is simply a homotopy in the above sense such that for each $t \in I$, the map $h_{t}(x)=$ $h(x, t): X \longrightarrow Y$ is a based map. That is we require $h\left(x_{0}, t\right)=y_{0}$ for all t. We write $[X, Y]_{*}$ for the set of based homotopy classes of maps.
Example 1.4. You already know about the fundamental group $\pi_{1}(X, x)$ of a based space (X, x). This is simply the set $\pi_{1}(X, x)=\left[S^{1},(X, x)\right]_{*}$. Here S^{1} is the standard unit circle in \mathbb{R}^{2}, and the basepoint is usually taken to be the point $(1,0)$.

Definition 1.5. A map $f: X \longrightarrow Y$ is said to be a homotopy equivalence if there exists a map $g: Y \longrightarrow X$ and homotopies $g \circ f \simeq \operatorname{id}_{X}$ and $f \circ g \simeq \operatorname{id}_{Y}$. We write $X \simeq Y$ if there is a homotopy equivalence between them and say X and Y are homotopy equivalent.
Example 1.6. For any X, the projection $X \times I \longrightarrow X$ is a homotopy equivalence.
Proposition 1.7. The property of being homotopy equivalent defines an equivalence relation on spaces. Moreover, homotopy equivalences satisfy the "2-out-of-3" property.
Proof. The 2-out-of-3 property says that if we are given maps $X \xrightarrow{f} Y \xrightarrow{g} Z$ and we define $h=$ $g \circ f$, then if two of the three maps f, g, and h are homotopy equivalences, then so is the third. Proposiiton 1.3 readily implies that if f and g are homotopy equivalences, then so is h. We will show that if f and h are homotopy equivalences, then so is g.

Let f^{\prime} and h^{\prime} be homotopy inverses for f and h, respectively. Consider the map $f \circ h^{\prime}: Z \longrightarrow Y$. We claim that this is a homotopy inverse for g. First, $g \circ f \circ h^{\prime}=h \circ h^{\prime} \simeq \mathrm{id}_{Z}$ since h^{\prime} is homotopy inverse to h. Second,

$$
\begin{aligned}
f \circ h^{\prime} \circ g & \simeq f \circ h^{\prime} \circ g \circ f \circ f^{\prime} \\
& =f \circ h^{\prime} \circ h \circ f^{\prime} \\
& \simeq f \circ f^{\prime} \simeq \operatorname{id}_{Y} .
\end{aligned}
$$

Definition 1.8. Say a space X is contractible if it is homotopy equivalent to $*$, the one-point space. Say a map $f: X \longrightarrow Y$ is null-homotopic (or simply null) if it is homotopic to a constant map.

Example 1.9. The spaces I, D^{n}, and \mathbb{R}^{n} are contractible.
Proposition 1.10. If X is any space and Y is contractible, then the projection $X \times Y \longrightarrow X$ is a homotopy equivalence.
Proposition 1.11. A space X is contractible if and only if the identity map $\operatorname{id}_{X}: X \longrightarrow X$ is null.

2. Fri, Jan. 21

Proposition 2.1. If $f: X \longrightarrow Y$ and either X or Y is contractible, then f is null-homotopic.
Proposition 2.2. If $f: S^{n} \longrightarrow Y$, then there is an extension $\tilde{f}: D^{n+1} \rightarrow Y$ if and only if f is null-homotopic.
Proof. Proposition 2.1 above shows that if \tilde{f} exists, then f must be null. Suppose now that we have a null homotopy $h: S^{n} \times I \longrightarrow Y$. Then the restriction of h to $S^{n} \times\{1\}$ is constant, so h factors through the space $S^{n} \times I / S^{n} \times\{1\}$. This space is homeomorphic to D^{n+1} ! (Think of the time coordinate t as corresponding to $1-r$, where r is the radius)

In fact, for general X, the construction $X \times I / X \times\{1\}$ is an important one. It is called the cone on X (or mapping cone) and denoted $C X$. The result above generalizes to the following:
Proposition 2.3. If $f: X \longrightarrow Y$, then there is an extension $\tilde{f}: C X \longrightarrow Y$ if and only if f is null-homotopic.

The spaces S^{n} and D^{n} will figure prominently in the rest of the course, so we mention now a few other models for these spaces:

- $S^{n} \cong D^{n} / S^{n-1}$
- As D^{n} is contractible, any other contractible space will do, but an often convenient choice is I^{n} (the n-fold product of I with itself)
- In the model I^{n} for D^{n}, the replacement for S^{n-1} is ∂I^{n}, the set of n-tuples $\left(t_{1}, \ldots, t_{n}\right)$ such that one of the coordinates t_{i} is either 0 or 1 .
- $S^{n} \cong I^{n} / \partial I^{n}$
- Let $J^{n} \subset \partial I^{n}$ be the subset $\partial I^{n-1} \times I \cup I^{n-1} \times\{1\}$. Then $I^{n} / J^{n} \cong D^{n}$ and $\partial I^{n} / J^{n} \cong S^{n-1}$.

As an organizational principle, it is convenient to specify and analyze the categories in which we are working. On the one hand, we have the category Top of topological spaces and (continuous) maps. On the other hand, we are also interested in the category $\mathbf{T o p}_{*}$ of based spaces and based maps.

Proposition 2.4. The coproduct of X in Y in Top is given by their disjoint union $X \amalg Y$ and their product is given by the cartesian product $X \times Y$.

The coproduct of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ in $\mathbf{T o p}_{*}$ is given by the wedge $X \vee Y$, obtained from $X \amalg Y$ by imposing the relation $x_{0} \sim y_{0}$. The (equivalence class of) x_{0} in $X \vee Y$ is the basepoint. The product of $\left(X, x_{0}\right)$ and $\left(Y, y_{0}\right)$ in $\mathbf{T o p}_{*}$ is again the cartesian product $X \times Y$, pointed at $\left(x_{0}, y_{0}\right)$.

There is another important construction involving based spaces.
Definition 2.5. Given based spaces $\left(X, x_{0}\right)$ and (Y, y_{0}), their smash product $X \wedge Y$ is defined to be the based space $(X \times Y) /(X \vee Y)$. The (class of the) point (x_{0}, y_{0}) is the basepoint.

It is tempting to think that $X \wedge Y$ is the categorical product of X and Y in $\mathbf{T o p}_{*}$, but this is false. In general, there are not even well-defined "projection" maps $X \wedge Y \longrightarrow X$ or $X \wedge Y \longrightarrow Y$.

One reason to care about the smash product construction is the following.
Proposition 2.6. For any m and $n \geq 0, S^{m} \wedge S^{n} \cong S^{m+n}$.
Proof. It is most convenient to prove this using the model $S^{n}:=I^{n} / \partial I^{n}$. Then

$$
\begin{aligned}
S^{m} \wedge S^{n} & =\left(S^{m} \times S^{n}\right) /\left(S^{m} \vee S^{n}\right) \\
& =\left(I^{m} \times I^{n}\right) /\left[\left(\partial I^{m} \times I^{n}\right) \cup\left(I^{m} \times \partial I^{n}\right)\right] \\
& \cong I^{m+n} / \partial I^{m+n}=S^{m+n} .
\end{aligned}
$$

Given any based space (X, x_{0}), we can simply forget about the basepoint and consider the underlying space. This defines a functor $u: \mathbf{T o p}_{*} \longrightarrow$ Top. There is also a functor in the other direction: given any space X, we can define a based space X_{+}by adjoining a disjoint basepoint to X.

Proposition 2.7. The functor $X \mapsto X_{+}$is left adjoint to $u: \mathbf{T o p}_{*} \longrightarrow$ Top.
This means that we have a natural bijection

$$
\boldsymbol{T o p}_{*}\left(X_{+},\left(Y, y_{0}\right)\right) \cong \boldsymbol{T o p}\left(X, u\left(Y, y_{0}\right)\right)
$$

for any space X and based space $\left(Y, y_{0}\right)$.
In addition to the categores $\mathbf{T o p}$ and $\mathbf{T o p}_{*}$, we will also be interested in the associated homotopy categories. We let $\mathbf{H o}(\mathbf{T o p})$ denote the category whose objects are spaces and whose set of morphisms from X to Y is the set of homotopy classes of maps. (Check that this really defines a category!)

What are the "isomorphisms" in $\mathbf{H o (T o p)}$? An isomorphism $\alpha: X \longrightarrow Y$ is a homotopy class of maps such that there is a homotopy class of maps in the other direction and such that both compositions are in the homotopy class of the corresponding identity maps. This is precisely a homotopy equivalence. In fact, something stronger is true, as we will see next time.

