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CW complexes are well-behaved as topological spaces:

Theorem 1.1. Let X be a CW complex. Then
(1) The components of X are the path-components (Hatcher, A.4)
(2) If K is a compact subset of X, then K meets only finitely many cells. (Hatcher, A.1)
(3) X is Hausdorff (and even normal) (Hatcher, A.3)

While we are discussing point-set issues, let me mention another important consideration. In
algebra, given R-modules M , N , and P , there is a bijection

HomR(M ⊗R N, P ) ∼= HomR(M, Hom(N, P )).

In topology, we similarly would like to have a bijection

Hom(X × Y,Z) ∼= Hom(X, Map(Y, Z)),

where Map(Y, Z) is the space of continuous maps Y −→ Z, equipped with the compact-open
topology. But the canonical map

Hom(X × Y, Z) −→ Hom(X, Map(Y,Z))

is not surjective for all spaces X, Y , and Z. There are several ways to fix this problem, and the
solution we shall take is to work with compactly generated weak Hausdorff spaces.

A space X is weak Hausdorff if the image of any compact Hausdorff space is closed in X. A
weak Hausdorff space is compactly generated if a subset C ⊆ X is closed if (and only if) for
every continuous map g : K −→ X with K compact, the subset g−1(C) is closed in K.

Any time from now on that we talk about spaces, we really mean compactly generated weak
Hausdorff spaces. There are a couple more modifications that we need. One point is that if X and
Y are compactly generated weak Hausdorff, then X × Y need not be. So we redefine the topology
on X × Y by setting the closed subsets to be those satisfying the compactly generated condition.
Similarly, the mapping space Map(X, Y ) is not always compactly generated, so we similarly redefine
the topology. It turns out that after these steps, these replacements work as desired, and we end
up with a homeomorphism

Map(X × Y,Z) ∼= Map(X, Map(Y, Z)).

There is also a based variant of this. We write Map∗(X, Y ) for the space of based maps. Then we
have

Map∗(X ∧ Y,Z) ∼= Map∗(X, Map∗(Y,Z)).
See Chapter 5 of [May] or Neil Strickland’s notes for more on compactly generated spaces.

Proposition 1.2. If X and Y are CW complexes, then so is X×Y . An n-cell of X×Y corresponds
to a p-cell of X and a q-cell of Y , where p + q = n.
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Proof. The point is that we use the cube models for disks, then we have a homeomorphism

Dp+q = Ip+q ∼= Ip × Iq = Dp ×Dq,

and under this model we get

Sp+q−1 = ∂Dp+q = ∂(Dp)×Dq ∪Dp × ∂(Dq) = Sp−1 ×Dq ∪Dp × Sq−1.

I should emphasize here that when we write product, we mean the product in the compactly
generated sense. Otherwise, the topology on X × Y might not satisfy condition (3) from the
definition of a CW complex. See [Hatcher, Theorem A.6]. �

There are two important generalizations: a relative CW complex (X, A) is defined in the
same way, except that one starts with X0 as the space A disjoint union a discrete set.

A cell complex is a space with an increasing filtration X =
⋃
n Xn as before, but there are

now no conditions on the dimensions of the cells attached at stage n. For instance, X1 might be
obtained from X0 by attaching a 0-cell and a 3-cell. There is also the notion of a relative cell
complex (X, A).

Homotopy Extension Property

Definition 1.3. We say a map A −→ X satisfies the Homotopy Extension Property (HEP)

if, given any map X
f−→ Y and homotopy h : A× I −→ Y with h0 = f ◦ i, then there is an extension

h̃ : X × I −→ Y so that h̃ ◦ (i × id) = h and h̃0 = f . This can be represented by the following
“lifting” diagram

A
h //

i
��

Y I

ev0

��
X

f
//

h̃
>>}

}
}

}
Y.

Another name for a map satisfying the HEP is (Hurewicz) cofibration.

There is a universal example of such a lifting diagram. The data of a map X
f−→ Y and a

homotopy h : A × I −→ Y beginning at f ◦ i amounts to a single map from the space defined by
the pushout diagram

A
ι0 //

i

��

A× I

��
X // M(i) = X ∪A A× I.

This is called the mapping cylinder of the map i. Any lifting diagram for the HEP factors as

A //

i

��

M(i)I //

ev0

��

Y I

ev0

��
X // M(i) // Y,

so it is enough to find a lift in the case of Y = M(i).

Proposition 1.4. The map i : A −→ X is a cofibration if and only if M(i) is a retract of X × I.

Proposition 1.5. If i : A −→ X is a cofibration, then i is a closed inclusion (this uses that X is
weak Hausdorff).

Example 1.6. (1) The inclusion ∅ ↪→ X is always a cofibration. Indeed, Mi = X, which is
clearly a retract of X × I.
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(2) The inclusion {0} ↪→ I is a cofibration.
(3) The inclusion ∂I ↪→ I is a cofibration.
(4) The inclusion Sn−1 ↪→ Dn is a cofibration

2. Wed, Feb. 2

SNOW DAY!

3. Fri, Feb. 4

Proposition 3.1. The class of cofibrations is closed under
(1) composition,
(2) pushouts,
(3) coproducts,
(4) retracts, and
(5) sequential colimits.

Proof. (1) Suppose A
i−→ B

j−→ C are both cofibrations, and consider a test diagram

A
h //

i
��

Y I

ev0

��

B

j

��

h̃1

88ppppppp

C //

h̃2

@@�
�

�
�

�
�

�
�

�
Y

The homotopy h̃1 exists since i is a cofibration. We then form a lifting diagram with h̃1 as the top
horizontal arrow, and h̃2 then exists because j is a cofibration.

(2) Suppose that i : A −→ X is a cofibration and f : A→ Z is any map. We wish to show that
the induced map Z −→ Z ∪A X is a cofibration. Consider the test diagram

A

i

��

// Z

��

// Y I

ev0

��
X //

h̃1

55kkkkkkkkkk
Z ∪A X

h̃2

::v
v

v
v

v
// Y

The homotopy h̃1 exists since i is a cofibration. The lift h̃2 then exists by the universal property
of the pushout.

(3) Exercise
(4) Suppose that i : A −→ X is a retract of j : B −→ Z; that is, we have a diagram

A //

i
��

B

j

��

// A

i
��

X // Z // X
in which both horizontal compositions are the identity. Consider the test diagram

A //

i
��

B

j

��

// A

i
��

// Y I

ev0

��
X // Z //

77nnnnnnnn
X // Y

The displayed lift exists because j is a cofibration, and the desired lift is obtained by composing
with the given map X −→ Z.

(5) Exercise �
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Corollary 3.2. If A ↪→ X is a relative CW complex, the inclusion is a cofibration.

Proposition 3.3. If A ↪→ X is a cofibration and Z is any space, then A × Z ↪→ X × Z is a
cofibration.

Proof. The two following lifting diagrams are equivalent, and we know there is a lift in the second:
A× Z

��

// Y I

��
X × Z // Y

A //

��

(Y Z)I

��
X

<<y
y

y
y

// Y Z .
�

Remark 3.4. There is also a notion of based cofibration, in which one starts with a test diagram
of based maps (including a based homotopy on A) and asks for a based homotopy h̃.

Proposition 3.5. If a based map A −→ X is an unbased cofibration, then it is a based cofibration.

Proof. Given a based lifting diagram, we have a lift h̃ : X −→ Y × I if we forget about basepoints.
But this lift must be a based homotopy, since the basepoint is in A, and the initial homotopy on A
was assumed to be based. �

We say a based space (X, x) is non-degenerately based (or well-pointed) if the inclusion of
the basepoint is an unbased cofibration (note that it is vacuously a based cofibration). Given any
based space (X,x), one may “attach a whisker” to force X to be well-pointed. That is, form the
space X ′ = X ∨ I, with new basepoint at the endpoint 1 of the interval (we glue I to X at the
endpoint 0). Then it is easy to show that ∗ → X ′ is a cofibration. This is a special case of the
following result:

Proposition 3.6. (Replacing a map by a cofibration) Any map f : X −→ Y factors as a compo-
sition X

i−→M(f)
p−→ Y , where i is a cofibration and p is a homotopy equivalence.

Proof. The map i includes X at time 1, and the map p is defined by p(x, t) = f(x) for t > 0 and
p(y, 0) = y.

To see that i is a cofibration, we need to provide a retraction to the inclusion M(i) ↪→M(f)× I.
The map r : M(f)× I −→M(i) defined by

r(x, s, t) =
{

(x, s(1 + t), 0) s ≤ 1/(1 + t)
(x, 1, s(1 + t)− 1) s ≥ 1/(1 + t)

does the trick.
We now check that p is a homotopy equivalence. Define q : Y −→ M(f) to be the inclusion at

time 0. Then p ◦ q = idY and q ◦ p(x, t) = (f(x), 0). A homotopy h : q ◦ p ' idM is given by

h(x, t, s) = (x, ts) h(y, s) = y.

�

Proposition 3.7. If X is non-degenerately based and Y is a path-connected based space, then any
map f : X −→ Y is homotopic to a based map.

Proof. Let h : ∗ −→ Y I specify a path from f(∗) to the basepoint y. By the HEP for the inclusion
∗ ↪→ X, this extends to a homotopy h̃ : X −→ Y I , and the map h̃(0, 1) : X −→ Y is based by
construction. �
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