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BERTRAND GUILLOU

1. Mon, Jan. 31
CW complexes are well-behaved as topological spaces:

Theorem 1.1. Let X be a CW complex. Then

(1) The components of X are the path-components (Hatcher, A.})
(2) If K is a compact subset of X, then K meets only finitely many cells. (Hatcher, A.1)
(3) X is Hausdorff (and even normal) (Hatcher, A.3)

While we are discussing point-set issues, let me mention another important consideration. In
algebra, given R-modules M, N, and P, there is a bijection

Hompg(M ®gr N, P) = Homg(M,Hom(N, P)).
In topology, we similarly would like to have a bijection
Hom(X x Y, Z) = Hom(X, Map(Y, 2)),

where Map(Y, Z) is the space of continuous maps ¥ — Z, equipped with the compact-open
topology. But the canonical map

Hom(X x Y, Z) — Hom(X,Map(Y, Z))

is not surjective for all spaces X, Y, and Z. There are several ways to fix this problem, and the
solution we shall take is to work with compactly generated weak Hausdorff spaces.

A space X is weak Hausdorff if the image of any compact Hausdorff space is closed in X. A
weak Hausdorff space is compactly generated if a subset C' C X is closed if (and only if) for
every continuous map g : K — X with K compact, the subset g~1(C) is closed in K.

Any time from now on that we talk about spaces, we really mean compactly generated weak
Hausdorff spaces. There are a couple more modifications that we need. One point is that if X and
Y are compactly generated weak Hausdorff, then X x Y need not be. So we redefine the topology
on X XY by setting the closed subsets to be those satisfying the compactly generated condition.
Similarly, the mapping space Map(X,Y) is not always compactly generated, so we similarly redefine
the topology. It turns out that after these steps, these replacements work as desired, and we end
up with a homeomorphism

Map(X x Y, Z) = Map(X,Map(Y, Z)).

There is also a based variant of this. We write Map, (X, Y’) for the space of based maps. Then we
have
Map, (X AY, Z) = Map, (X, Map, (Y, Z)).

See Chapter 5 of [May] or Neil Strickland’s notes for more on compactly generated spaces.
Proposition 1.2. If X and Y are CW complexes, then so is X XY . Ann-cell of X XY corresponds

to a p-cell of X and a q-cell of Y, where p+ ¢ = n.
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Proof. The point is that we use the cube models for disks, then we have a homeomorphism
pPta — [pHa o~ [P« 9 — DP « qu
and under this model we get
SPra—l — gprte = 9(DP) x DU DP x (D) = SP~1 x DIUDP x ST,

I should emphasize here that when we write product, we mean the product in the compactly
generated sense. Otherwise, the topology on X x Y might not satisfy condition (3) from the
definition of a CW complex. See [Hatcher, Theorem A.6]. [

There are two important generalizations: a relative CW complex (X, A) is defined in the
same way, except that one starts with Xy as the space A disjoint union a discrete set.

A cell complex is a space with an increasing filtration X = (J,, X, as before, but there are
now no conditions on the dimensions of the cells attached at stage n. For instance, X7 might be
obtained from Xy by attaching a O-cell and a 3-cell. There is also the notion of a relative cell
complex (X, A).

Homotopy Extension Property
Definition 1.3. We say a map A — X satisfies the Homotopy Extension Property (HEP)

if, given any map X EN Y and homotopy h : Ax I — Y with hg = f o, then there is an extension
h:X xI — Y sothat ho (i xid) = h and hg = f. This can be represented by the following
“lifting” diagram

Another name for a map satisfying the HEP is (Hurewicz) cofibration.

There is a universal example of such a lifting diagram. The data of a map X EN Y and a
homotopy h : A x I — Y beginning at f o4 amounts to a single map from the space defined by
the pushout diagram

Lo

A AxT

i)l(—>M(i) :XluAAxL

This is called the mapping cylinder of the map 7. Any lifting diagram for the HEP factors as
A—— M) ——=yT

X —=M(@l)——=Y,
so it is enough to find a lift in the case of Y = M (3).

Proposition 1.4. The map i : A — X is a cofibration if and only if M (i) is a retract of X x I.

Proposition 1.5. If i : A — X is a cofibration, then i is a closed inclusion (this uses that X is
weak Hausdorff).

Example 1.6. (1) The inclusion ) — X is always a cofibration. Indeed, Mi = X, which is
clearly a retract of X x I.
2



(2) The inclusion {0} — I is a cofibration.
(3) The inclusion 0I — I is a cofibration.
(4) The inclusion S"~1 < D™ is a cofibration

2. WED, FEB. 2
SNOW DAY!

3. Fri, FEB. 4

Proposition 3.1. The class of cofibrations is closed under
1) composition,

2) pushouts,

3) coproducts,

4) retracts, and

5) sequential colimits.
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The homotopy h1 exists since i is a cofibration. We then form a lifting diagram with hi as the top
horizontal arrow, and hy then exists because j is a cofibration.

(2) Suppose that i : A — X is a cofibration and f: A — Z is any map. We wish to show that
the induced map Z — Z Uy X is a cofibration. Consider the test diagram

A ~ Z P y!
% hl/l/ - /~/ evg
e - < g h2
XT——7ZUyX——Y
The homotopy hi exists since i is a cofibration. The lift Ay then exists by the universal property
of the pushout.

(3) Exercise
(4) Suppose that i : A — X is a retract of j : B — Z; that is, we have a diagram

A——=B——A
b
X—7——X
in which both horizontal compositions are the identity. Consider the test diagram

I
A B A Y
| ATl
X 7= X Y

The displayed lift exists because j is a cofibration, and the desired lift is obtained by composing
with the given map X — Z.
(5) Exercise [



Corollary 3.2. If A — X is a relative CW complez, the inclusion is a cofibration.

Proposition 3.3. If A — X is a cofibration and Z is any space, then A X Z — X X Z is a
cofibration.

Proof. The two following lifting diagrams are equivalent, and we know there is a lift in the second:

Ax 7 ——=yI A—— (Y&
S
XxZ——Y X/—>YZ_

Remark 3.4. There is also a notion of based cofibration, in which one starts with a test diagram

of based maps (including a based homotopy on A) and asks for a based homotopy h.
Proposition 3.5. If a based map A — X is an unbased cofibration, then it is a based cofibration.

Proof. Given a based lifting diagram, we have a lift h : X — Y x I if we forget about basepoints.
But this lift must be a based homotopy, since the basepoint is in A, and the initial homotopy on A
was assumed to be based. |

We say a based space (X, ) is non-degenerately based (or well-pointed) if the inclusion of
the basepoint is an unbased cofibration (note that it is vacuously a based cofibration). Given any
based space (X, ), one may “attach a whisker” to force X to be well-pointed. That is, form the
space X' = X V I, with new basepoint at the endpoint 1 of the interval (we glue I to X at the
endpoint 0). Then it is easy to show that * — X’ is a cofibration. This is a special case of the
following result:

Proposition 3.6. (Replacing a map by a cofibration) Any map f: X — Y factors as a compo-

sition X - M(f) LY, where i is a coftbration and p is a homotopy equivalence.

Proof. The map i includes X at time 1, and the map p is defined by p(z,t) = f(z) for t > 0 and
p(y,0) =y.
To see that i is a cofibration, we need to provide a retraction to the inclusion M (i) — M(f) x 1.
The map 7 : M(f) x I — M(i) defined by
B (x,s(14+1),0) s<1/(1+1)
riw,s,t) = { (e, 1,s(1+8) —1) s> 1/(1+1)
does the trick.
We now check that p is a homotopy equivalence. Define ¢ : Y — M(f) to be the inclusion at
time 0. Then po g =1idy and qop(x,t) = (f(x),0). A homotopy h : g op ~ idys is given by
h(z,t,s) = (x,ts) h(y,s) =y.
[

Proposition 3.7. If X is non-degenerately based and Y is a path-connected based space, then any
map f: X — Y is homotopic to a based map.

Proof. Let h : x — Y specify a path from f (%) to the basepoint y. By the HEP for the inclusion
% < X, this extends to a homotopy h : X — Y, and the map h(0,1) : X — Y is based by
construction. [}



