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1. Mon, Feb. 7

Proposition 1.1. Let i : A −→ X be a based map between non-degenerately based spaces. If i is a
based cofibration, then it is also an unbased cofibration.

Proof. Let

A

i
��

h // Y I

ev0

��
X

f // Y
be a test diagram (f and g are not based maps). The space Y does not have a preassigned basepoint,
so we choose y0 = f(x0) as the basepoint. Then f , but not h, is a based map. Since A is non-
degenerately based, the homotopy h is homotopic to a based map. This requires us to know that
h(a0) is in the path-component (in Y I) of the basepoint. But h(a0) is a path in Y beginning at y0,
so there is an obvious homotopy to the constant path at y0. Use of this produces a homotopy of
homotopies H : A× I × I −→ Y satisfying

H(a0, 0, s) = y0 = H(a0, t, 1).

The first of these equalities comes from our choice of contracting homotopy of h(a0), and the second
is the statement that H(a, t, 1) is a based homotopy.

Let us write h2(a, s) := H(a, 0, s). As we said above, this is a based homotopy. Then we get a
lift in the diagram

A

i
��

h2 // Y I

��
X

f //

F
>>}

}
}

}
Y.

Let H̃ : A × I −→ Y I be defined by H̃(a, t)(s) = (a, s, t) (note the change of order of the
variables). We are now thinking of A × I as based at (a0, 1), and H̃ is now based. We therefore
get a lift in the diagram

A× I

i×id
��

H̃ // Y I

��
X × I F //

G
;;w

w
w

w
Y.

The restriction of G to X × {0} is then a lift of h. �

Proposition 1.2. Let f : (X,x0) −→ (Y, y0) be a based map between non-degenerately based spaces.
If f is a homotopy equivalence, then it is a based homotopy equivalence.
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Proof. Let g : Y −→ X be a homotopy inverse. Since g ◦ f ' id, it follows that g(y0) is in the
path-component of x0, so that by the previous result we can replace g up to homotopy by a based
map. Let h : g ◦ f ' id be a homotopy. This homotopy may not be based.

Let γ be the path h(x0, t) in X. Since X is well-pointed, we have a lift in the diagram

x0
γ //

��

XI

ev0

��
X

id
//

h′
==|

|
|

|
X.

Let e = h′1 : X −→ X. We claim that e ◦ g ◦ f is based homotopic to the identity. Define maps

J : X × I −→ X K : I −→ XI

by the formulas

J(x, s) =
{
h′(g ◦ f(x), 1− 2s) s ≤ 1

2
h(x, 2s− 1) s ≥ 1

2 ,

K(s, t) =
{

γ(1− 2s(1− t)) s ≤ 1
2

γ(1− 2(1− s)(1− t)) s ≥ 1
2 .

J specifies a homotopy e ◦ g ◦ f ' g ◦ f on the first half of the interval and a homotopy g ◦ f ' id
on the second half (this is not a based homotopy). The map K is given, for fixed t, by traveling
along γ |[t,1] backwards and then forwards. The important thing is that K takes value x0 if either
s = 0, 1 or t = 1. The HEP now gives a lift

I
K //

��

XI

ev0

��
X × I

J
//

L
;;w

w
w

w
X.

The restriction of L to the intervals (0, t), (s, 1), and (1, 1 − t) now specifies a based homotopy
e ◦ g ◦ f . So, writing g′ = e ◦ g, we have that g′ ◦ f is based homotopic to the identity of X. We
know that f ◦ g′ ' idY , but we do not know that there is a based homotopy. But we can repeat the
above argument to replace f by a homotopic based map f ′ so that f ′ ◦ g′ '∗ idY . It is now formal
that the left and right homotopy inverses for g′ must coincide up to based homotopy, so that we
have a based homotopy equivalence. �

We are headed towards a proof of the Whitehead theorem, but first we will need to discuss
relative homotopy groups. Suppose given a based map i : A −→ X (usually an inclusion). In
order to define relative homotopy groups, it is convenient to use the models In and ∂In for Dn and
Sn−1. Recall that we also have the subspace Jn ⊂ ∂n given by Jn = ∂In−1 × I ∪ In−1 × {1} with
∂In/Jn ∼= Sn−1. For any n ≥ 1, we define

πn(X,A, a0) = [(In, ∂In−1, Jn), (X,A, a0)].

That is, the relative homotopy group πn(X,A, a0) is the set of homotopy classes of diagrams

Jn //

��

a0

��
∂In

g //

��

A

��
In

f // X,

where the homotopies are through maps of the same form. Note that when A is simply the basepoint
of X, then we get πn(X,x, x) = πn(X,x).
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There is another useful description of relative homotopy groups. Given a based map i : A −→ X
as above, define a space F (i) ⊆ XI ×A (the homotopy fiber of i) by

F (i) = {(γ, a) | γ(1) = x0, γ(0) = i(a).

The pair (cx0 , a0) consisting of the constant path at x0 and the lift a0 serve as a natural basepoint
for F (i).

Proposition 1.3. For any n ≥ 1, we have

πn(X,A, a0) ∼= πn−1(Fi).

Proof. A map f : In −→ X corresponds to a map In−1 −→ XI . The restriction of g to In−1 ×
{0} −→ A gives the second component of a map ϕ : In−1 −→ F . Since the restriction of g to Jn is
constant at the basepoint, it follows that ϕ sends all of ∂In−1 to the basepoint of F . �

Corollary 1.4. The set πn(X,A, a0) is a group for n ≥ 2 and an abelian group for n ≥ 3.

Note that the relative homotopy groups are functorial with respect to maps of triples. In par-
ticular, the map of triples (X,x0, x0) −→ (X,A, a0) induces a map

j∗ : πn(X,x) −→ πn(X,A, a0).

We also have a “boundary map”

∂ : πn(X,A, a0) −→ πn−1(A, a0)

which assigns to a map (f, g) of triples the restriction of g to In−1 × {0}. The further restric-
tion of this to ∂In−1 × {0} ⊆ Jn is constant at the basepoint, so we get an induced based map
In−1/∂In−1 −→ A.

2. Wed, Feb. 9

Theorem 2.1. The sequence

· · · → πn(A, a0) i∗−→πn(X,x0)
j∗−→ πn(X,A, a0) ∂−→ πn−1(A)→ . . .

∂−→ π0(A)→ π0(X)

is a long exact sequence.

Proof. We begin by establishing that

π1(A) i∗−→ π1(X)
j∗−→ π1(X,A) ∂−→ π0(A) i∗−→ π0(X)

is exact.
Exactness at π0(A): Let a′ ∈ A and suppose that i∗(a′) = [x0] in π0(X). Then we have a

path γ in X starting at i(a′) and ending at x0. But then the pair (γ, a′) specifies a point of F ,
and a′ = ∂(γ, a′). Conversely, if (γ, a′) is a point in F , then the path γ in X establishes that
i∗∂(γ, a′) = i∗[a′] = [x0] in X.

Exactness at π1(X,A): Let (γ, a′) be a point of F (so γ is a path in X starting at i(a′) and
ending at x0) such that [a′] = [a0] in π0(A). Let α be a path in A starting at a′ and ending at
a0. Then γ−1i(α) specifies a loop in X based at x0. Moreover, the corresponding map of triples
(I, ∂I, {1}) −→ (X,A, a0) is homotopic to (γ, a′) via the homotopy that simply contracts i(α) to
the constant path at i(a′).

Exactness at π1(X): Let β : I −→ X be a loop based at x0, and suppose j∗(β) is trivial in
π1(X,A). This means that we have a homotopy h : β ' cx0 to the constant path such that
h(1, t) = x0 for all t and such that h(0, t) is the image of a loop α in A. Now the homotopy h
specifies a based homotopy β ' i(α). In other words, [β] = i∗[α].

Now we will reinterpret the rest of the terms in the sequence as shifted copies of the terms just
discussed. Let di : F (i) −→ A be the projection map.
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Lemma 2.2. The map ∂ : π1(X,A) −→ π0(A) corresponds to (di)∗ under the isomorphism
π1(X,A) ∼= π0(F (i)).

Let ΩX denote the based loop space Map∗(S1, X) of X. Then

π1(X) = [S1, X]∗ ∼= [S0,ΩX]∗ ∼= π0(ΩX).

We have a map ΩX −→ F (i) which sends a loop γ to the pair (γ, a0).

Lemma 2.3. The above map makes the diagram

π1(X)
j∗ //

∼=
��

π1(X,A)

∼=
��

π0(ΩX) // π0(Fi)
commute.

Lemma 2.4. There is a homeomorphism making the following diagram commute:

F (Ωi)

dΩi ##HH
HH

HH
HH

H

∼= // ΩF (i)

Ωdi{{vvv
vv

vv
vv

ΩA.

Proof. We define the required map by sending the pair (h, γ) to the map

t 7→ (evt ◦ h, γ(t)).

It is not difficult to see this is a homeomorphism and that the images of these elements under the
maps to ΩA are both γ. �

As a result of the above lemmas, we get exactness of the long sequence at three more spots to
the left. The above tells us that the maps

π2(A) i∗−→ π2(X)
j∗−→ π2(X,A) ∂−→ π1(A) i∗−→ π1(X)

may be reinterpreted as the maps in

π1(ΩA) i∗−→ π1(ΩX)
j∗−→ π1(ΩX,ΩA) ∂−→ π0(ΩA) i∗−→ π0(ΩX),

so we are done. �

3. Fri, Feb. 11

Definition 3.1. We say that a map f : X −→ Y is an n-equivalence if for every choice of
basepoint x ∈ X, the map πi(X,x) −→ πi(Y, f(x)) is an isomorphism for i < n and a surjection
for i = n.

Proposition 3.2. A map f : X −→ Y is an n-equivalence if and only the relative homotopy groups
πi(Y,X) vanish for i ≤ n and π0(X) −→ π0(Y ) is surjective

Because of this, an n-equivalence is also sometimes called an n-connected map.
One of the key tools in working with CW complexes is the Homotopy Extension and Lifting

Property (HELP).

Theorem 3.3. (HELP, May 10.3) Let (X,A) be a relative CW complex of dimension ≤ n and let
e : Y −→ Z be an n-equivalence. Then, given maps f : X −→ Z, g : A −→ Y , and h : A× I −→ Z
such that f |A = h ◦ i0 and e ◦ g = h ◦ ii in the following diagram, there are maps g̃ and h̃ that make
the entire diagram commute:
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A
i0 //

j

��

A× I
h

||xx
xx

xx
xx

x

��

A
i1oo

g

~~~~
~~

~~
~~

j

��

Z Y
eoo

X

f
??~~~~~~~~

i0
// X × I

h̃

bbF
F

F
F

F

X
i1

oo
g̃

``@
@

@
@

Proof. The proof is by induction on the cells. It thus suffices to consider the case of attaching a
single cell ed of dimension d ≤ n to A. Since then X = A ∪Sd−1 ed, by the universal properties of
pushouts, it is enough to consider the case Sd−1 ↪→ Dd. We treat this case separately below. �

Proposition 3.4. The HELP holds for the inclusion Sd−1 ↪→ Dd for any d ≤ n.

Proof. We have already seen that the inclusion Sd−1 ↪→ Dd satisfies the HEP. That is, the homotopy
h defined on Sd−1 extends to one ĥ defined on Dd. This is not yet the desired homotopy h̃, as there
is no reason for the endpoint of the homotopy, h(−, 1), to lift to a map to Y .

We will use the following lemma:

Lemma 3.5 (Compression). If a map of triples (Id, ∂Id, Jd)
f,g−−→ (Z, Y, y0) represents zero in

πd(Z, Y, y0), then the map Id −→ Z is homotopic, rel ∂Id, to a map that lifts to Y .

Proof. Suppose H is a homotopy from the map (f, g) of triples to the constant map. Thus H
corresponds to a map H1 : Id× I −→ Z and a lift H2 : ∂Id× I −→ Y of H1 |∂Id×I . The restriction
of H1 to Jd × I is constant at the basepoint z0 and similarly with the restriction to Id × {1}. So
both of these restrictions lift to a constant map to Y . The restriction of H1 to Id−1 × {0} × I lifts
to Y by hypothesis. But now the point is that the union

(Jd × I) ∪ (Id × {1}) ∪ (Id−1 × {0} × I)

is another model for the disk Dd. The boundary is ∂Id×{0}, the same as that of the disk Id×{0}.
It follows that the map H1 specifies a homotopy from f to the map e◦H2 |Id−1×{0}×I and that this
homotopy is constant on the chosen model for Sd−1. �

As e : Y −→ Z is an n-equivalence, the relative homotopy group πd(Z, Y ) vanishes, so that the
map of pairs h(−, 1) : (Dd, Sd−1) −→ (Z, Y ) is homotopic, rel Sd−1, to a map that lifts to Y by
the lemma. This new homotopy may be glued to ĥ to obtain h̃. (Draw a picture) �

Theorem 3.6 (Whitehead’s theorem). Let e : Y −→ Z be a weak equivalence between cell com-
plexes. Then e is a homotopy equivalence.

Proof. Applying HELP with A = ∅, X = Z, and f = idZ gives a map g̃ : Z −→ Y and a homotopy
h̃ : idZ ' e ◦ g̃.

∅ //

��

∅

||yyyyyyyyy

��

∅oo

����
��

��
��

��

Z Y
eoo

Z

idZ
??�������

i0
// Z × I

h̃

bbF
F

F
F

F

Z
i1

oo
g̃

__?
?

?
?

To see that g̃ ◦ e is also homotopic to the identity, use HELP with A = Y × ∂I, X = Y × I, G the
map g̃ ◦ e

∐
idY and H the constant homotopy.
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Y × ∂I
i0 //

��

Y × ∂I × I
H

yyssssssssss

��

Y × ∂I
i1oo

G

{{wwwwwwwww

��

Z Y
eoo

Y × I

h̃◦e
;;wwwwwwwww

i0
// Y × I × I

H̃

eeK
K

K
K

K

Y × I
i1

oo
G̃

ccG
G

G
G

G

The desired homotopy is then given by G̃. �
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