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1. Mon, Feb. 21

Note that since we have C(f) = X ∪A C∗(A) and the inclusion A ↪→ C∗(A) at time 0 is a
cofibration, it follows that the pushout map i : X −→ C(f) is a cofibration. In particular, the
quotient C(f)/X is based homotopy equivalent to C(X i−→ C(f)). The quotient C(f)/X can also
be identified with ΣA. So we get a “cofiber sequence”

A
f−→ X

i−→ C(f) ∂−→ ΣA.

Proposition 1.1. The cofiber of ∂ is homotopy equivalent to ΣX, and under this identification,
the map ΣA −→ C(∂) ' ΣX is identified with the map −Σf defined by −Σf(x, t) = (x, 1− t).

(Draw pictures)
So the cofiber sequence extends to a long sequence of based maps

A
f−→ X

i−→ C(f) ∂−→ ΣA
−Σf−−−→ ΣX −Σi−−→ . . . .

Theorem 1.2. (Long exact sequence) For any based space Z, mapping the long cofiber sequence
into Z produces a long exact sequence

. . . −→ [ΣX,Z]∗ −→ [ΣA,Z]∗ −→ [C(f), Z]∗ −→ [X,Z]∗ −→ [A,Z]∗.

At the right end of the sequence, these are just pointed sets, but [ΣA,Z]∗ ∼= π1(Map∗(A,Z))
and [Σ2A,Z]∗ ∼= π2(Map∗(A,Z)), so we get groups and eventually abelian groups in this long exact
sequence. The proof of this result is completely analogous to the proof of the long exact sequence
in homotopy.

In fact, this result can also be deduced from the earlier result for the following reason:

Proposition 1.3. Let f : A −→ X be a based map and let Map∗(f) : Map∗(X,Z) −→ Map∗(A,Z)
be the induced map. Then the homotopy fiber F (Map∗(f)) is homeomorphic to the mapping space
Map∗(C(f), Z).

Proof. This follows from the universal property of the pushout C(f) = X ∪AC∗(A):

Map∗(C(f), Z) ∼= Map∗(X,Z)×Map∗(A,Z) Map∗(C∗(A), Z)
∼= Map∗(X,Z)×Map∗(A,Z) P∗Map∗(A,Z) ∼= F (f),

where P∗(Y ) is the space of based paths in Y (ending at the basepoint). �

Although cofiber sequences do not give rise to a long exact sequence in homotopy, they do give
rise to a long exact sequence in homology:

Theorem 1.4. For any based map f : A −→ X, there is a long exact sequence in reduced homology

. . . −→ H̃n(A) −→ H̃n(X) −→ H̃n(C(f)) −→ H̃n−1(A) −→ . . . .
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Proof. Up to homotopy equivalence, we may assume that f is a cofibration and that the cofiber
C(f) is the quotient X/A. This is then the long exact sequence in homology for a “good pair”. �

Homotopy pushouts
Last time, we said that if f : A −→ X is a cofibration, then the cofiber C(f) is homotopy

equivalent to X/A. This generalizes as follows:

Proposition 1.5. Let j : A −→ X be a cofibration and consider a pushout square

A
j //

��

X

��
B // P.

Then P is homotopy equivalent to the “double mapping cylinder” B ∪A A × I ∪A X. Moreover,
suppose given a map of diagrams

A
j //

��

X A′
j′ //

��

X ′

//

B B′

in which both j and j′ are cofibrations and the component maps fA : A ∼−→ A′, fB : B ∼−→ B′,
fX : ∼−→ X ′ are homotopy equivalences. Then P ' P ′ (where P ′ is the pushout of the second
diagram).

The space P above is called the homotopy pushout of the maps B ← A→ X.

Proof. A very similar argument to the one from last time shows that P is homotopy equivalent to
the pushout of the diagram

A //

��

M(j)

B.
But this pushout is homeomorphic to the double mapping cylinder.

For the second part, it is not difficult to see that replacing X or B up to homotopy equivalence
results in a homotopy equivalent pushout. That replacing A does not change the homotopy type
follows from the following lemma:

Lemma 1.6. A pushout of a homotopy equivalence along a cofibration is a homotopy equivalence.
That is, if j is a cofibration and f is a homotopy equivalence in the square

A
j //

f

��

X

α
��

A′ // X ′,

then α is a homotopy equivalence.

Proof. We may as well assume that X is a mapping cylinder M and that j is the inclusion at time
1. Let g be a homotopy inverse for f . Up to homeomorphism, we may replace X ′ by the double
mapping cylinder M ∪A A × I ∪A A′ and the map α by the inclusion (this is homotopic to the
original map). We define a map β : X ′ −→ M in the other direction by the identity map on the
subspace M of X ′ and by using a homotopy h : idA ∼ g ◦ f on the rest. Then β ◦ α = id on the
nose, and α ◦ β ' id by first using a homotopy to pull the image of A′ into A′ and then using a
homotopy f ◦ g ' id. �
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Example 1.7. Here’s an easy example to see that we need to assume one of the maps is a cofibra-
tion:

Sn //

��

Dn+1

��

Sn //

��

∗

��
//

Dn+1 // Sn+1 ∗ // ∗
Here we have homotopy equivalences that do not produce a homotopy equivalence on the pushout.

2. Wed, Feb. 23

Last time, we showed that as long as one of the maps B ← A → X is a cofibration, then the
pushout B ∪A X is equivalent to the double mapping cylinder (the homotopy pushout). Here is
another situation in which one can deduce the that the pushout is a homotopy pushout. First recall
that a triple (X;A,B) consisting of a space X and subspaces A and B is called an excisive triad
if X = intA ∪ intB.

Theorem 2.1. Let (X;A,B) be an excisive triad and let C = A ∩B. Then the square

C //

��

B

��
A // X

is a homotopy pushout square.

See [May, §10.7] for a proof.
Relation of cofiber sequences to fiber sequences
Let f : A −→ X be a based map. Then we can form the cofiber sequence

A
f−→ X

i−→ C(f).

Consider the diagram

F (f)

ϕ

��

p // A
f //

��

X
i // C(f)

ΩC(f) // F (i)

==||||||||

The left vertical map (ϕ) is specified by sending (γ, a) to the loop in C(f) given on the first half
of the interval by γ−1 and on the second half by the path t 7→ (a, 2t− 1). The second vertical map
sends a to (δa, f(a)), where δa is the path t 7→ (a, t). The square does not commute on the nose,
but it commutes up to homotopy (the pair (δa · γ−1, ∗) can be contracted to (δa, f(a)) by moving
the initial point along γ−1).

The map ϕ is usually not an equivalence, but we will see later that if A and X are both n-
connected, then ϕ induces an isomorphism on πn. We will also see that the analogue of this map
in spectra is an equivalence.

Example 2.2. Recall the Hopf map η : S3 −→ S2. In homework 3, you show that F (η) ' S1.
What is C(η)? Certainly η is not a cofibration, so we should first convert it into a cofibration to
compute the cofiber. Since the cofiber is the homotopy pushout of the maps ∗ ← S3 → S2, by what
we have said previously, we may equally well replace the map S3 −→ ∗ by a cofibration, namely
the cofibration S3 ↪→ D4. That is, the cofiber is the result of attaching a 4-cell to S2 via η. This
is precisely the CW structure on CP2 that we mentioned earlier.
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Here is a careful description of this CW structure, from Hatcher. We usually write CP2 as the
quotient of S5 by the action of S1 (complex multiplication). But every point of S5 ⊆ C3 can be
identified, under this action of S1, with a point (x, y, z) such that the third complex coordinate z
is in fact real and ≥ 0. If z 6= 0, there is a unique such point, whereas if z = 0, then the whole
S1 orbit of (x, y, z) is of this form. This subspace of S5 is a hemisphere of S4 ⊆ S5, so it is D4.
Furthermore, we can now write CP2 as a quotient of D4 by an action of S1 on the boundary S3.
This identification on the boundary is precisely η : S3 −→ S2.

There is another way to identify the cofiber of η as CP2, using that excisive triads produce
homotopy pushouts. We may replace the diagram ∗ ← S3 → S2 up to homotopy by the excisive
triad diagram

V − {[0 : 0 : 1]} //

��

CP2 − {[0 : 0 : 1]}

V,

where V ⊆ CP2 is the open subset

V = {[x : y : z] | z 6= 0}.

The open subsets V and CP2−{[0 : 0 : 1]} certainly cover CP2, so this gives an excisive triad. The
subset V is homeomorphic to C2 (send [x : y : z] to (x/z, y/z)) and is therefore contractible. It also
follows that V − {[0 : 0 : 1]} ' S3. Finally, the map CP2 − {[0 : 0 : 1]} −→ CP1 sending [x : y : z]
to [x : y] is well-defined since x and y cannot both be zero. The inclusion CP1 ↪→ CP2−{[0 : 0 : 1]}
defined by [x : y] 7→ [x : y : 0] is a homotopy inverse.

So we have identified the cofiber of η with the space CP2. The comparison map S1 ' F (η) −→
ΩC(η) ' ΩCP2 cannot be an equivalence: the exact sequence

π5(S1) −→ π5(S5) −→ π5(CP2)π4(S1)

shows that π5(CP5) ∼= Z, so that π4(ΩCP5) ∼= Z, whereas π4(S1) = 0.

Fibrations & fiber sequences
We have discussed both (homotopy) fibers and cofibers, and we have seen that the cofiber of a

cofibration is just the poin-set quotient. There is an analogue of this statement for the fiber of a
fibration. The notion of a fibration is completely dual to that of a cofibration:

Definition 2.3. A map p : E −→ B is a (Hurewicz) fibration if for every space X, map f : X −→
E and homotopy h : X × I −→ B with h0 = p ◦ f , there is an extension h̃ : X × I −→ E. In other
words, we get a lift in the diagram

X
f //

i0
��

E

p

��
X × I

h
//

h̃

;;w
w

w
w

w
B.

We also say that the map p satisfies the homotopy lifting property (or covering homotopy
property).

Remark 2.4. There is an important generalization of fibration, called a Serre fibration, in which
the map p : E −→ B is only asked to satisfy the homotopy lifting property with respect to spaces
X = In. We will come back to this later.

As for cofibrations, there is a “universal” diagram to check. The pair of maps X
f−→ E and

X
h−→ BI that make the diagram commute correspond to a single map X −→ E×B BI . This is the
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unbased path space construction on the map p, and we will write P (p) or F (p) for this as well. We
can see that any lifting diagram factors as

X

i0

��

// P (p)

i0
��

// E

p

��
X × I // P (p)× I // B,

and finding a lift in the square on the right will give a lift in the big rectangle.

3. Fri, Feb. 25

Proposition 3.1. The map p : E −→ B is a fibration if and only if the natural map k : EI −→ P (p)
has a splitting s : P (p) −→ EI so that k ◦ s = idP (p).

We think of the section s as a “path-lifting function” for the fibration p.

Proposition 3.2. The class of fibrations is closed under
(1) composition,
(2) pullbacks,
(3) products,
(4) retracts, and
(5) sequential inverse limits.

If f : E −→ B is any map, we may factor this as E
j−→ P (f)

q−→ B. The map q evaluates the path
in B at time 1, and j(e) = (e, cf(e)).

Proposition 3.3. For any map f , the map E
j−→ P (f) is a homotopy equivalence and P (f)

q−→ B
is a fibration.

Proof. Projection p1 onto the E factor gives a map p1 : P (f) −→ E so that p1 ◦ j = id. The other
composition j ◦p1 ' id via the homotopy that contracts paths starting at f(e) to the constant path
at f(e).

To see that q is a fibration, consider a test diagram

X

i0
��

(g1,g2) // P (f)

q

��
X × I

h
//

::v
v

v
v

v
B.

We define the lift h̃ by the formula

h̃(x, t) = (g1(x), h(x) |[0,t] ·g2(x)),

where we renormalize the path h(x) |[0,t] ·g2(x) so that we travel along g2(x) for time 0 to 1
1+t

and along the h(x) |[0,t] for time 1
1+t to 1. Since the initial square commutes, we know that

h(x, 0) = g2(x)(1), so that it makes sense to compose the paths h(x) |[0,t] and g2(x)). Our formula
for h̃(x, t) is a point of P (f) since the path h(x) |[0,t] ·g2(x) begins at f ◦ g2(x). The upper
triangle then commutes because concatenating g2(x) with the constant path, renormalized to have
length zero, just gives g2(x) again. The lower triangle commutes because the endpoint of the path
h(x) |[0,t] ·g2(x) is h(x, t). �

So any map may be replaced by a fibration by changing the domain up to homotopy equivalence.
Examples.
(1) For any space X, the map X −→ ∗ is a fibration (we say that the space X is fibrant)
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(2) Any covering space E −→ B is a fibration. In fact, for a covering space the lift h̃ is uniquely
determined.

(3) Any vector bundle E −→ B is a fibration if the base B is paracompact (essentially means
can find partitions of unity for any cover; any CW complex is paracompact).

Recall that a rank n (real) vector bundle over B is a map p : E −→ B such that there
exists a cover U of B and a homeomorphism ϕU : p−1(U) ∼= U × Rn compatible with the
projections to U . This is subject to the compatibility condition that if U and V are elements
of the cover, then the transition function gU,V defined as the composition

(U ∩ V )× Rn ϕ−1
U−−→ p−1(U ∩ V )

ϕV−−→ (U ∩ V )× Rn

restricts, for each x ∈ U ∩ V to a linear isomorphism Rn ∼= Rn of fibers.
Without the assumption that the base is paracompact, we can still deduce that a vector

bundle is a Serre fibration.
(4) More generally, any fiber bundle in which the base space is paracompact is a fibration.

A map p : E −→ B is a fiber bundle with fiber F if B has a cover U and for each
U ∈ U a homeomorphism ϕU : p−1(U) ∼= U × F over U .

Without the paracompact hypothesis on the base, we can again say that any bundle is
at least a Serre fibration.

There is also an intermediate notion of G-bundle, where a group G acts on the fiber F , and the
transition functions are assumed to arise from the action of G on F .

Proposition 3.4. A fiber bundle p : E −→ B is a Serre fibration.

Proof. Let p : E −→ B be a fiber bundle, and suppose given a a lifting diagram

In
f //

i0
��

E

p

��
In × I

h
// B.

Let U be a covering for B on which we have trivializations for the bundle. Since In× I is compact,
we may divide In into subcubes C and I into subintervals J , such that each C × J is contained in
a single h−1(U).

For each C, we build a lift on each C × J , starting with the J containting 0, and working our
way up in the I coordinate. So by assumption, we have a lift along the initial point of our interval,
which we may take to be 0 for simplicity. Moreover, this cube C borders other cubes, and we may
have already constructed lifts on the other cubes. So we suppose that for some union D of faces of
∂C, we already have a lift along D × I.

For our fixed C and J , the fiber bundle becomes the trivial fiber bundle U × F −→ U . A lift in
the diagram

C

i0
��

f // U × F

��
C × J h //

99t
t

t
t

t
U

must be given in the first coordinate by the map h, so it remains to describe the second coordinate
of the lift. By assumption, we already have a lift C ∪D D × J −→ U × F −→ F . But the space
C ∪D D × J is a retract of C × J , so we may compose the lift we already have with a choice of
retraction C × J r−→ C ∪D D × J . �
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