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2. Wed, Mar. 2

More examples
(5) The Hopf fibration η : S3 −→ S2 is an S1-bundle (with fiber S1, so this is a principal

S1-bundle)
(6) The higher Hopf maps: ν : S7 −→ S4 and σ : S15 −→ S8. These are made by the same

construction as for η, using the quaternions or octonions, respectively, instead of C. The
map ν is a principal S3-bundle. Recall that S3 is the group of unit quaternions and can be
identified with the Lie group SU(2).

The unit octonions S7 do not form a group since the octonions are not associative.
Nevertheless, σ is a fiber bundle with fiber S7.

There is one more fibration we have not mentioned: if we use R instead of C, we get the
quotient map S1 −→ RP1. But RP1 ∼= S1, and this map is a double cover. So the Hopf map
S1 −→ S1 is just the degree 2 map. It is a consequence of the Hopf invariant one problem,
solved by Frank Adams, that there are no other fiber sequences in which the base, total
space, and fiber are all spheres.

If f : E −→ B is based, we can identify the point-set fiber of the fibration q : P (f) −→ B with
F (f). More generally, we have

Proposition 2.1. If f : E −→ B is a fibration, then f−1(∗) ' F (f).

Proof. This is the dual of the argument for homotopy equivalence of the quotient of a cofibration
with the cofiber.

Let E
p−→ B be a fibration and consider the following test diagram:

F (f)
p //

i0
��

E

p

��
F (f)× I ev

//

h̃

::v
v

v
v

v
B.

By the definition of F (f), the map h̃1 : F (f) −→ E factors through f−1(∗). We also have the
natural map α : f−1(∗) −→ F (f) defined by α(e) = (e, c∗) (we are writing ∗ for the basepoint in
B). Then h̃1 ◦ α(e) is the endpoint of a path in f−1(b0) starting at e. A homotopy back to e is
given by traveling along this path. The homotopy H : id ' α ◦ h̃1 is given by

H((e, γ), t) = (h̃((e, γ), t), γ|[t,1]).

�
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Actually, the preceding result follows from the following statement, which is dual to the statement
that if A

f−→ X is based and a homotopy equivalence and A and X are well-pointed, then f is a
based homotopy equivalence:

Proposition 2.2. If E −→ B is a fibration, then the map E
j−→ P (f) is a homotopy equivalence

over B .

The homotopy type of the homotopy fiber does not depend on the choice of basepoint of B
(within a given path-component of B):

Proposition 2.3. Let γ be a path in B, and write b0 = γ(0), b1 = γ(1). Then if p : E −→ B is a
fibration, the fibers F0 = p−1(b0) and F1 = p−1(b1) are homotopy equivalent.

Proof. We define maps between F0 and F1 as the time 1 lifts in the diagrams
F0

//

��

E

p

��
F0 × I

γ //

α

<<x
x

x
x

x
B

F1
//

��

E

p

��
F1 × I

γ−1

//

β
;;w

w
w

w
w

B.
It remains to show α1 ◦ β1 ' id and β1 ◦ α1 ' id.

We have homotopies F0 × I −→ E given by

β ◦ (α1 × id) : α1 ' β1 ◦ α1

and
α : id ' α1.

We the concatenation of these homotopies is thus a homotopy H : F0× −→ E from id to β1 ◦ α1,
but it does not lift to a homotopy F0 × I −→ F0. We can fix this as follows: let G : F0 × I2 −→ B
represent a homotopy cb0 ' γ−1 ∗ γ through loops at b0. We then get a lift in the diagram

F0 × I
H //

��

E

p

��
F0 × I2

G
//

K

;;w
w

w
w

w
B.

Using a homeomorphism J2 ∼= I, the restriction of K to F0× J2 gives a homotopy F0× I −→ E
living over the constant map to b0 ∈ B. In other words, we get a homotopy id ' β1 ◦ α1.

A similar argument gives a homotopy α1 ◦ β1 on F1. �

Our above discussion gives a long exact sequence in homotopy arising from a fibration, but this
can be improved to a statement about Serre fibrations:

Proposition 2.4. Let p : E −→ B be a Serre fibration. Then πn(p−1(b0)) ∼= πn+1(B,E).

We will prove this next time.

Homotopy pullbacks
Dual to the notion of homotopy pushout is that of a homotopy pullback. One can define the

homotopy pullback of a pair of maps A
f−→ B

g←− C to be “double path space”, by which we mean
the pullback in the diagram P (f)→ B ← P (g). It is common to write A×hB C for the homotopy
pullback, and the maps A −→ P (f) and C −→ P (g) provide a map

A×B C −→ A×hB C.
There are two versions of homotopy pullbacks: one is homotopy invariant, while the other is weak
homotopy invariant.
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Proposition 2.5. Suppose given a pair of maps A
f−→ B

g←− C.
(1) If either f or g is a fibration, then the map A×B C −→ A×hB C is a homotopy equivalence.
(2) If either f or g is a Serre fibration, then the map A ×B C −→ A×hB is a weak homotopy

equivalence.

3. Fri, Mar. 4

Leftover from last class:

Proposition 3.1. Let p : E −→ B be a Serre fibration. Then πn(p−1(b0)) ∼= πn+1(B,E).

Proof. As we already know that πn(F (p)) ∼= πn+1(B,E), it suffices to show that the relative
homotopy groups πn(F (p), p−1(b0)) vanish and that π0(p−1(b0)) −→ π0(F (p)) is a bijection. We
deal with the π0 statement first. Let (e, γ) ∈ F (p). Let γ̃ be a lift of γ with γ̃(0) = e. We claim
that (e, γ) and (γ̃(1), cb0) lie in the same path-component of F (p). Indeed, a path between them is
given by

t 7→ (γ̃(t), γ|[t,1]).

Suppose given a map of triples (In, ∂In, Jn)
(f,g)−−−→ (F (p), p−1(b0), e0). This corresponds to a map

of triples

(In+1, In × {0}, Jn × {0}) (F,G,∗)−−−−→ (B,E, e0)
such that the restriction of F to Jn+1 ⊆ In × I is constant at the basepoint b0.

It is then easy to find a homotopy H from F : In × I −→ B to the constant map In × I −→ B.
In fact, given that F |Jn+1 is constant at b0, we may take the homotopy H to be defined by F on
the face In × {0} × I. We wish to lift this to a map to E with initial data G. This lift will also
be required to be constant along Jn × {0} × I. The desired lift arises from the following lifting
diagram (

In × {0} × {0}
)
∪

(
Jn × {0} × I

)
��

// E

��
In × {0} × I F //

55jjjjjjjjjj
B.

A lift exists because the top left space is homeomorphic to In × {0} × {0}.
�

Back to homotopy pullbacks: In any square

D

��

// C

��
A // B,

there are always maps
D −→ A×B C −→ A×hB C,

and we say that the given square is a homotopy pullback square (or is homotopy cartesian) if the
above composition is a homotopy equivalence. We say the square is a weak homotopy pullback
square if the composition is a weak homotopy equivalence.

Remark 3.2. The term “homotopy pullback square” in the literature is used to mean either of the
above two situations, but it more often refers to what we are calling a weak homotopy pullback.

p-cartesian squares and the Homotopy Excision Theorem
Recall that (X;A,B) is an excisive triad if A,B ⊆ X and X is the union of the interiors of A

and B.
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Theorem 3.3 (Blakers-Massey Homotopy Excision Theorem). Let (X;A,B) be an excisive triad
with C = A ∩ B nonempty. Then, if the inclusions C ↪→ A and C ↪→ B are p-connected and
q-connected, respectively, then the square

C //

��

A

��
B // X

is (p+ q − 1)-cartesian, meaning that the map C −→ B ×hX A is a (p+ q − 1)-equivalence.

The following result gives another interpretation of k-cartesian squares.

Proposition 3.4. Consider a commutative square

D
g′ //

f ′

��

C

f

��
B g

// A.

Then
(1) The square is a weak homotopy pullback square if and only if for every b ∈ B, the induced

map g′′ : Fb(f ′) −→ Fg(b)(f) is a weak homotopy equivalence
(2) The square is k-cartesian if and only if for every b ∈ B, the induced map g′′ : Fb(f ′) −→

Fg(b)(f) is a k-equivalence.

Proof. Without loss of generality, we may assume that f is a fibration, so that Fg(b)(f) = f−1(g(b)).
Then in the diagram

F (f ′) Φ //

��

p−1(b)
∼= //

��

f−1(g(b))

��
D

Λ //

f ′

��

B ×hA C //

p

��

C

f

��
B B g

// A,

the bottom right square is strict pullback, and the map p−1(b) −→ f−1(g(b)) is a homeomorphism.
The 5-lemma, combined with the long exact sequence in homotopy for the fibrations

F (f ′) −→ D −→ B

and
p−1(b) −→ B ×hA C −→ B

imply that Λ is a weak equivalence ⇐⇒ Φ is a weak equivalence ⇐⇒ g′ is a weak equivalence.
The same argument shows that Λ is a k-equivalence if and only if g′ is a k-equivalence. �

Before giving the proof of the Blakers-Massey Theorem, we will deduce a number of important
consequences.

Theorem 3.5. (Freudenthal Suspension Theorem) Let E : πj(X) −→ πj+1(ΣX) be the suspension
map

πj(X) = [Sj , X]∗ −→ [S1 ∧ Sj , S1 ∧X]∗ ∼= [Sj+1,ΣX]∗ = πj+1(ΣX).
If X is well-pointed and n-connected, this map is an isomorphism if j ≤ 2n and is a surjection for
j = 2n+ 1.
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Proof. Consider the homotopy pushout square

X //

��

CX

��
CX // ΣX

(need X-well-pointed to deduce the inclusion X ↪→ C∗(X) is a cofibration). Since X is n-connected
and C∗(X) is contractible, the inclusions X ↪→ CX are (n + 1)-equivalences. It follws that the
square is (2n+1)-cartesian, so that X −→ ΩΣ(X) is a (2n+1)-equivalence. Thus the induced map

πj(X) −→ πj(ΩΣX) ∼= πj+1(ΣX)

is an isomorphism for j ≤ 2n and a surjection for j = 2n+ 1. �
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