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1. MonN, MAR. 7

Today, we will prove the Homotopy Excision theorem.

Theorem 1.1 (Blakers-Massey Homotopy Excision Theorem). Let (X; A, B) be an excisive triad
with C = AN B nonempty. Then, if the inclusions C — A and C — B are p-connected and
q-connected, respectively, then the square

CcC——A
B——X
is (p + q¢ — 1)-cartesian, meaning that the map C — B x};( Ais a (p+ q — 1)-equivalence.

Proof. Note that the projection map B x% C — (' is a homotopy equivalence. It thus suffices to
show that the map

Bx%hC— Bxk A
is a (p+ g — 1)-equivalence. We will show that the relative homotopy group
(B x% A, B x4 O)
vanishes for n < p 4+ q. Suppose given a map of triples
(I",dI",J") — (B x"% A, B x% C, ¢y)

(co is an arbitrary basepoint for C'). It suffices to show that this can be deformed, through maps
of the above form, into a map sending all of I into B x’]‘g C.
The above data corresponds to a map of triples

(I" x I, 1" x {0} UDI™ x I, J" x I) 22X (X, B, by)

such that F(I" x {1}) € A. We need to deform this so that F'(I" x I) C B. We will use the
following technical result to do so. First, subdivide the cube I x I into subcubes D such that for
each D, either F(D) C A or F(D) C B. This can be done by the Lebesgue Lemma, since {A, B}
is an open cover for X.

Proposition 1.2. There is a homotopy ® : I x I — X through maps of the above form such
that &9 = F and such that for any subcube D C 1™t
(1) If F(D) C A, then ®(D) C A, and similarly for B.
(2) If F(D) C C, then ® is constant on D.
(3) If F(D) C A, then ®;(A\ C)N D C M,1(D)
(4) If F(D) C B, then ®;Y(B\ C)N D C Ly1(D),
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where M, (D) C D is the subset consisting of points (x;) such that at least n of the coordinates satisfy
% < z; <1 (after identifying the cube with I7). Similarly, points in L,(D) satisfy 0 < x; < % for
at least n coordinates.

We will use this result to prove the theorem and return to prove this technical result afterwards.
Let us write G = ®;. Consider now the projection P : I" x [ — I™.

Claim: The intersection PG~*(A\ C) N PG~Y(B\ O) is empty.

To see this, let y = P(z) € PG~Y(A\ C). Suppose that z € G~1(A\ C) N D for some D. Then
2z € Mp1(D), so y € My(P(D)). Similarly, if y € PG=Y(B\ C) then y = P(2'), 2/ € D', and
y € Ly(P(D")). Thus y € M,(P(D)NP(D"))NLy(P(D)NP(D")), which is impossible if n < p+g.

By the claim, the closed subsets PG~!(A4\ C) and PG~ (B \ C) of I" are disjoint, so by the
Urysohn lemma, there exists a Urysohn function u : I — I such that

u(PG~HA\C) =0, u(PGYB\C)) =1.
We now define a homotopy ¥ : I"™ x I x I — X with ¥y = G by the formula
U((x,t),s) =Gz, (1 — s)t+ stu(x)).
We claim that this is again a homotopy through maps of the correct form and that H = ¥; has
image in B.

For instance, we check that Wy(z,1) € A for every x € I". If x € PG~}(B\ C), then u(z) = 1,
so Wy(x,1) = G(x,1 — s +s) = G(z,1) € A. On the other hand, if z ¢ PG~Y(B\ C, then
Us(x,1) =Gz, 1 —s+s-u(x) ¢ B\C=X\A4,so ¥y(z,1) € A

The argument that H = ¥y has image in B is similar. If z € PG~}(A\ C, then

H(z,t) = G(x,t-u(x)) = G(x,0) € B.
On the other hand, if x ¢ PG~(A\ C), then
H(z,t) =G(z,t-u(x)) ¢ ANC=X\B, = H(x,t)e€B.
This finishes the proof of the Blakers-Massey theorem. |

2. WED, MAR. 16

Last time, we proved the Blakers-Massey Theorem, assuming the following “technical” result.
Recall that we had an excisive triad (X; A4, B) with C' = AN DB nonempty, that the inclusions C' — A
and C — B were p-connected and g-connected, respectively. We had a map F : I"t! — X and a
subdivision of I™*! into subcubes C such that the image of any C under F is entirely contained in
A or in B. For simplicity, we will write n rather than n + 1.

Proposition 2.1. There is a homotopy ® : I™ x I — X such that &y = F and such that for any
subcube D C I™,

(1) If F(D) C A, then ®(D) C A, and similarly for B.

(2) If F(D) C C, then ® is constant on D.
(3) If F(D) C A, then ®'(A\ C)N D C M,,1(D)
(4) If F(D) C B, then ®;Y(B\ C)N D C Ly1(D),
where M (D) C D is the subset consisting of points (x;) such that at least k of the coordinates satisfy
% < z; < 1 (after identifying the cube with I7). Similarly, points in Li(D) satisfy 0 < x; < % for
at least k coordinates.

Proof. The homotopy will be built inductively over the faces of cubes (induction on dimension).
First, suppose that D = {d} is a O-dimensional cube. If F(d) € C, then we define ® to be
constant (®(d,t) = F(d) Vt). If F(d) € A\ C, then there is a path in A from F(d) to a point in
C = BN A, since the pair (A4, C) is 0-connected (meaning that mo(C) — mo(B)). We use this path
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for the homotopy ® on D = {d}. This makes (1) and (3) hold since ®;*(A\ C) N D is empty. We
do the same if F((d) € B\ C.

Suppose now that we have a k-dimensional cube D, and that we have the homotopy ® defined
on all faces of D, satisfying (1)-(4) above. We then extend this homotopy to D, using that the
inclusion 0D < D is a cofibration. If F(D) C C, we must take the constant homotopy. If this
is not the case, suppose without loss of generality that F(D) C A. Then since the homotopy ®
defined on the faces satisfies (1), we have a square

aDLAI

|5

D —Es 4,

and so we get a homotopy G defined on all of D and satisfying (1). Unfortunately, property (3)
may not yet hold, so we need to modify this construction. There are two cases.

Suppose first that £k = dim D < p. Recall that the inclusion C < A is assumed to be p-connected.
Then there is a homotopy H : D x I — A, rel 9D with Hy = Gy and H;(D) C C. This holds
because 7 (A, C) = 0 since k < p. Now the concatenation H * G is a homotopy ® on D satisfying
(3), since again ®7'(A\ C) is empty.

The other case is that £ = dim D > p. We need to deform g = (1 so that the preimage of
A\ C in D will be in M,1(D). Consider the map h : I* — I* as in the picture. This is a map
that is the identity on OI* and that takes My (D) isomorphically to I*. Furthermore, h =~ id rel
OI*. Tt follows that gh ~ g rel I*, and we claim that this is the desired homotopy. Suppose that
gh(z) € A\ C. If z € My(D), then certainly My(D) C M,1(D) since k > p + 1, so we are done.
On the other hand, if z ¢ My (D), then h(z) is in OI*. But then h(z) lies on a face of the cube and
h(z) € g 1(A\ C), so it follows that h(z) is in M1 of the fact. Because of the definition of h, it
follows that z is also in M1 (D). [

Eilenberg-Mac Lane spaces
Given a group G and n > 0, an Eilenberg-Mac Lane space K(G,n) is a CW complex satisfying

(K (G,n)) g{ S

Note that if n > 2, then G must be abelian. For n = 0, we can just take the discrete space G itself.
By the Hurewicz theorem, K (G, n) has no homology in degrees < n, and H,,(K(G,n);Z) = G if
n > 1. By the Universal Coefficient Theorem,

H"(K(G,n); A) = Hom(G, A).
For example, we have
H"(K(Z,n);Z) = Z, H"(K(Z/m,n);Z/m) = Z/m.
Examples
(1) Stisa K(Z,1).
(2) Since the homotopy groups of a product are the product of homotopy groups, it follows
that K(A,n) x K(B,n) is a K(A® B,n). For example, the torus is a K(Z $ Z,1).
(3) The wedge S* Vv St is a K(Fy,1).
(4) The space CP* is a K(Z,2). Recall that for each n we have a fiber sequence
S — §2H — cPn.

The long exact sequence in homotopy gives mo(CP") = Z and m;(CP") = 0 for 2 < i <
2n + 1. This implies that the infinite union CP* has my(CP>) = Z and no other nontrivial
homotopy groups.
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(5) The space RP*> is a K(Z/2,1). Again, this comes from considering the fiber sequences
S0 =27/2 — S" — RP"™.

The universal cover S™ of RP™ is a double cover, so 7 (RP") has order two, and the higher
homotopy groups of RP" agree with those of S™.

(6) The spaces K(Z/p,1) for p odd are known as Lens spaces. They can be constructed in a
similar manner. Recall that S* acts on S2"*! as complex multiplication. The group Z/p sits
insides S! as the pth roots of unity. Taking the quotient of this action on $2"*! gives a space
with fundamental group Z/p, and as we take a colimit over n we get an Eilenberg-Mac Lane
space.

(7) For any group (or monoid) G, there is a “classifying space” BG, which is a K(G,1). More-
over, there are constructions of BG which are functorial with respect to group homomor-
phisms. Recall that the multiplication map G x G — G is a homomorphism if and only if
G is abelian. So for an abelian group G, the classifying space BG inherits a multiplication
and becomes an abelian monoid. We can then iterate B to get B"G = K(G,n).

The last example describes one way of producing Eilenberg-Mac Lane spaces, given the construc-
tion B. One can also construct K (G, n)’s by hand, as follows. Let n > 2 and suppose G is abelian.
Write G as a cokernel

7" —7M — G —0
of a map of free abelian groups. We then define the n-skeleton to be X, =/, S". We define the
(n + 1)-skeleton as the cofiber of the map

Vs —\/ " =X, — Xnpa.
no ni

The cofiber X,, 11 may have nontrivial homotopy in degrees n + 1 and higher. We thus attach
n + 2-cells to kill m,41. The result may still have homotopy in degrees n 4+ 2 and higher, so we
attach n + 3-cells to kill m, 5. Attaching cells to kill all higher homotopy groups, we arrive at a
CW complex with the desired homotopy groups.



