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1. Mon, Mar. 7

Today, we will prove the Homotopy Excision theorem.

Theorem 1.1 (Blakers-Massey Homotopy Excision Theorem). Let (X;A,B) be an excisive triad
with C = A ∩ B nonempty. Then, if the inclusions C ↪→ A and C ↪→ B are p-connected and
q-connected, respectively, then the square

C //

��

A

��
B // X

is (p+ q − 1)-cartesian, meaning that the map C −→ B ×h
X A is a (p+ q − 1)-equivalence.

Proof. Note that the projection map B ×h
B C −→ C is a homotopy equivalence. It thus suffices to

show that the map
B ×h

B C −→ B ×h
X A

is a (p+ q − 1)-equivalence. We will show that the relative homotopy group

πn(B ×h
X A,B ×h

B C)

vanishes for n < p+ q. Suppose given a map of triples

(In, ∂In, Jn) −→ (B ×h
X A,B ×h

B C, c0)

(c0 is an arbitrary basepoint for C). It suffices to show that this can be deformed, through maps
of the above form, into a map sending all of In into B ×h

B C.
The above data corresponds to a map of triples

(In × I, In × {0} ∪ ∂In × I, Jn × I)
F,F ′
−−−→ (X,B, b0)

such that F (In × {1}) ⊆ A. We need to deform this so that F (In × I) ⊆ B. We will use the
following technical result to do so. First, subdivide the cube In × I into subcubes D such that for
each D, either F (D) ⊆ A or F (D) ⊆ B. This can be done by the Lebesgue Lemma, since {A,B}
is an open cover for X.

Proposition 1.2. There is a homotopy Φ : In+1 × I −→ X through maps of the above form such
that Φ0 = F and such that for any subcube D ⊆ In+1,

(1) If F (D) ⊆ A, then Φ(D) ⊆ A, and similarly for B.
(2) If F (D) ⊆ C, then Φ is constant on D.
(3) If F (D) ⊆ A, then Φ−1

1 (A \ C) ∩D ⊆Mp+1(D)
(4) If F (D) ⊆ B, then Φ−1

1 (B \ C) ∩D ⊆ Lq+1(D),
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where Mn(D) ⊆ D is the subset consisting of points (xi) such that at least n of the coordinates satisfy
1
2 < xi ≤ 1 (after identifying the cube with Ij). Similarly, points in Ln(D) satisfy 0 ≤ xi <

1
2 for

at least n coordinates.

We will use this result to prove the theorem and return to prove this technical result afterwards.
Let us write G = Φ1. Consider now the projection P : In × I −→ In.

Claim: The intersection PG−1(A \ C) ∩ PG−1(B \ C) is empty.
To see this, let y = P (z) ∈ PG−1(A \ C). Suppose that z ∈ G−1(A \ C) ∩D for some D. Then

z ∈ Mp+1(D), so y ∈ Mp(P (D)). Similarly, if y ∈ PG−1(B \ C) then y = P (z′), z′ ∈ D′, and
y ∈ Lq(P (D′)). Thus y ∈Mp(P (D)∩P (D′))∩Lq(P (D)∩P (D′)), which is impossible if n < p+ q.

By the claim, the closed subsets PG−1(A \ C) and PG−1(B \ C) of In are disjoint, so by the
Urysohn lemma, there exists a Urysohn function u : In −→ I such that

u(PG−1(A \ C)) ≡ 0, u(PG−1(B \ C)) ≡ 1.

We now define a homotopy Ψ : In × I × I −→ X with Ψ0 = G by the formula

Ψ((x, t), s) = G(x, (1− s)t+ stu(x)).

We claim that this is again a homotopy through maps of the correct form and that H = Ψ1 has
image in B.

For instance, we check that Ψs(x, 1) ∈ A for every x ∈ In. If x ∈ PG−1(B \ C), then u(x) = 1,
so Ψs(x, 1) = G(x, 1 − s + s) = G(x, 1) ∈ A. On the other hand, if x /∈ PG−1(B \ C, then
Ψs(x, 1) = G(x, 1− s+ s · u(x)) /∈ B \ C = X \A, so Ψs(x, 1) ∈ A.

The argument that H = Ψ1 has image in B is similar. If x ∈ PG−1(A \ C, then

H(x, t) = G(x, t · u(x)) = G(x, 0) ∈ B.
On the other hand, if x /∈ PG−1(A \ C), then

H(x, t) = G(x, t · u(x)) /∈ A \ C = X \B, =⇒ H(x, t) ∈ B.
This finishes the proof of the Blakers-Massey theorem. �

2. Wed, Mar. 16

Last time, we proved the Blakers-Massey Theorem, assuming the following “technical” result.
Recall that we had an excisive triad (X;A,B) with C = A∩B nonempty, that the inclusions C ↪→ A
and C ↪→ B were p-connected and q-connected, respectively. We had a map F : In+1 −→ X and a
subdivision of In+1 into subcubes C such that the image of any C under F is entirely contained in
A or in B. For simplicity, we will write n rather than n+ 1.

Proposition 2.1. There is a homotopy Φ : In × I −→ X such that Φ0 = F and such that for any
subcube D ⊆ In,

(1) If F (D) ⊆ A, then Φ(D) ⊆ A, and similarly for B.
(2) If F (D) ⊆ C, then Φ is constant on D.
(3) If F (D) ⊆ A, then Φ−1

1 (A \ C) ∩D ⊆Mp+1(D)
(4) If F (D) ⊆ B, then Φ−1

1 (B \ C) ∩D ⊆ Lq+1(D),
where Mk(D) ⊆ D is the subset consisting of points (xi) such that at least k of the coordinates satisfy
1
2 < xi ≤ 1 (after identifying the cube with Ij). Similarly, points in Lk(D) satisfy 0 ≤ xi <

1
2 for

at least k coordinates.

Proof. The homotopy will be built inductively over the faces of cubes (induction on dimension).
First, suppose that D = {d} is a 0-dimensional cube. If F (d) ∈ C, then we define Φ to be

constant (Φ(d, t) = F (d) ∀t). If F (d) ∈ A \ C, then there is a path in A from F (d) to a point in
C = B ∩A, since the pair (A,C) is 0-connected (meaning that π0(C) � π0(B)). We use this path
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for the homotopy Φ on D = {d}. This makes (1) and (3) hold since Φ−1
1 (A \C) ∩D is empty. We

do the same if F (d) ∈ B \ C.
Suppose now that we have a k-dimensional cube D, and that we have the homotopy Φ defined

on all faces of D, satisfying (1)-(4) above. We then extend this homotopy to D, using that the
inclusion ∂D ↪→ D is a cofibration. If F (D) ⊆ C, we must take the constant homotopy. If this
is not the case, suppose without loss of generality that F (D) ⊆ A. Then since the homotopy Φ
defined on the faces satisfies (1), we have a square

∂D
Φ //

��

AI

��
D

F //

G
==|

|
|

|
A,

and so we get a homotopy G defined on all of D and satisfying (1). Unfortunately, property (3)
may not yet hold, so we need to modify this construction. There are two cases.

Suppose first that k = dimD ≤ p. Recall that the inclusion C ↪→ A is assumed to be p-connected.
Then there is a homotopy H : D × I −→ A, rel ∂D with H0 = G1 and H1(D) ⊆ C. This holds
because πk(A,C) = 0 since k ≤ p. Now the concatenation H ∗G is a homotopy Φ on D satisfying
(3), since again Φ−1

1 (A \ C) is empty.
The other case is that k = dimD > p. We need to deform g = G1 so that the preimage of

A \ C in D will be in Mp+1(D). Consider the map h : Ik −→ Ik as in the picture. This is a map
that is the identity on ∂Ik and that takes Mk(D) isomorphically to Ik. Furthermore, h ' id rel
∂Ik. It follows that gh ' g rel ∂Ik, and we claim that this is the desired homotopy. Suppose that
gh(z) ∈ A \ C. If z ∈ Mk(D), then certainly Mk(D) ⊆ Mp+1(D) since k ≥ p + 1, so we are done.
On the other hand, if z /∈Mk(D), then h(z) is in ∂Ik. But then h(z) lies on a face of the cube and
h(z) ∈ g−1(A \ C), so it follows that h(z) is in Mp+1 of the fact. Because of the definition of h, it
follows that z is also in Mp+1(D). �

Eilenberg-Mac Lane spaces
Given a group G and n ≥ 0, an Eilenberg-Mac Lane space K(G,n) is a CW complex satisfying

πi(K(G,n)) ∼=
{
G i = n
0 i 6= n

Note that if n ≥ 2, then G must be abelian. For n = 0, we can just take the discrete space G itself.
By the Hurewicz theorem, K(G,n) has no homology in degrees < n, and Hn(K(G,n); Z) ∼= G if

n > 1. By the Universal Coefficient Theorem,

Hn(K(G,n);A) ∼= Hom(G,A).

For example, we have

Hn(K(Z, n); Z) ∼= Z, Hn(K(Z/m, n); Z/m) ∼= Z/m.
Examples
(1) S1 is a K(Z, 1).
(2) Since the homotopy groups of a product are the product of homotopy groups, it follows

that K(A,n)×K(B,n) is a K(A⊕B,n). For example, the torus is a K(Z⊕ Z, 1).
(3) The wedge S1 ∨ S1 is a K(F2, 1).
(4) The space CP∞ is a K(Z, 2). Recall that for each n we have a fiber sequence

S1 ↪→ S2n+1 −→ CPn.

The long exact sequence in homotopy gives π2(CPn) ∼= Z and πi(CPn) = 0 for 2 < i <
2n+ 1. This implies that the infinite union CP∞ has π2(CP∞) ∼= Z and no other nontrivial
homotopy groups.
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(5) The space RP∞ is a K(Z/2, 1). Again, this comes from considering the fiber sequences

S0 = Z/2 ↪→ Sn −→ RPn.

The universal cover Sn of RPn is a double cover, so π1(RPn) has order two, and the higher
homotopy groups of RPn agree with those of Sn.

(6) The spaces K(Z/p, 1) for p odd are known as Lens spaces. They can be constructed in a
similar manner. Recall that S1 acts on S2n+1 as complex multiplication. The group Z/p sits
insides S1 as the pth roots of unity. Taking the quotient of this action on S2n+1 gives a space
with fundamental group Z/p, and as we take a colimit over n we get an Eilenberg-Mac Lane
space.

(7) For any group (or monoid) G, there is a “classifying space” BG, which is a K(G, 1). More-
over, there are constructions of BG which are functorial with respect to group homomor-
phisms. Recall that the multiplication map G×G −→ G is a homomorphism if and only if
G is abelian. So for an abelian group G, the classifying space BG inherits a multiplication
and becomes an abelian monoid. We can then iterate B to get BnG = K(G,n).

The last example describes one way of producing Eilenberg-Mac Lane spaces, given the construc-
tion B. One can also construct K(G,n)’s by hand, as follows. Let n ≥ 2 and suppose G is abelian.
Write G as a cokernel

Zn2 −→ Zn1 −→ G −→ 0
of a map of free abelian groups. We then define the n-skeleton to be Xn =

∨
n1
Sn. We define the

(n+ 1)-skeleton as the cofiber of the map∨
n2

Sn −→
∨
n1

Sn = Xn −→ Xn+1.

The cofiber Xn+1 may have nontrivial homotopy in degrees n + 1 and higher. We thus attach
n + 2-cells to kill πn+1. The result may still have homotopy in degrees n + 2 and higher, so we
attach n + 3-cells to kill πn+2. Attaching cells to kill all higher homotopy groups, we arrive at a
CW complex with the desired homotopy groups.
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