CLASS NOTES
 MATH 527 (SPRING 2011) WEEK 9

BERTRAND GUILLOU

1. Mon, Mar. 7

Today, we will prove the Homotopy Excision theorem.
Theorem 1.1 (Blakers-Massey Homotopy Excision Theorem). Let ($X ; A, B$) be an excisive triad with $C=A \cap B$ nonempty. Then, if the inclusions $C \hookrightarrow A$ and $C \hookrightarrow B$ are p-connected and q-connected, respectively, then the square

is ($p+q-1$)-cartesian, meaning that the map $C \longrightarrow B \times_{X}^{h} A$ is a $(p+q-1)$-equivalence.
Proof. Note that the projection map $B \times_{B}^{h} C \longrightarrow C$ is a homotopy equivalence. It thus suffices to show that the map

$$
B \times{ }_{B}^{h} C \longrightarrow B \times{ }_{X}^{h} A
$$

is a $(p+q-1)$-equivalence. We will show that the relative homotopy group

$$
\pi_{n}\left(B \times_{X}^{h} A, B \times_{B}^{h} C\right)
$$

vanishes for $n<p+q$. Suppose given a map of triples

$$
\left(I^{n}, \partial I^{n}, J^{n}\right) \longrightarrow\left(B \times_{X}^{h} A, B \times_{B}^{h} C, c_{0}\right)
$$

(c_{0} is an arbitrary basepoint for C). It suffices to show that this can be deformed, through maps of the above form, into a map sending all of I^{n} into $B \times{ }_{B}^{h} C$.

The above data corresponds to a map of triples

$$
\left(I^{n} \times I, I^{n} \times\{0\} \cup \partial I^{n} \times I, J^{n} \times I\right) \xrightarrow{F, F^{\prime}}\left(X, B, b_{0}\right)
$$

such that $F\left(I^{n} \times\{1\}\right) \subseteq A$. We need to deform this so that $F\left(I^{n} \times I\right) \subseteq B$. We will use the following technical result to do so. First, subdivide the cube $I^{n} \times I$ into subcubes D such that for each D, either $F(D) \subseteq A$ or $F(D) \subseteq B$. This can be done by the Lebesgue Lemma, since $\{A, B\}$ is an open cover for X.

Proposition 1.2. There is a homotopy $\Phi: I^{n+1} \times I \longrightarrow X$ through maps of the above form such that $\Phi_{0}=F$ and such that for any subcube $D \subseteq I^{n+1}$,
(1) If $F(D) \subseteq A$, then $\Phi(D) \subseteq A$, and similarly for B.
(2) If $F(D) \subseteq C$, then Φ is constant on D.
(3) If $F(D) \subseteq A$, then $\Phi_{1}^{-1}(A \backslash C) \cap D \subseteq M_{p+1}(D)$
(4) If $F(D) \subseteq B$, then $\Phi_{1}^{-1}(B \backslash C) \cap D \subseteq L_{q+1}(D)$,
where $M_{n}(D) \subseteq D$ is the subset consisting of points $\left(x_{i}\right)$ such that at least n of the coordinates satisfy $\frac{1}{2}<x_{i} \leq 1$ (after identifying the cube with I^{j}). Similarly, points in $L_{n}(D)$ satisfy $0 \leq x_{i}<\frac{1}{2}$ for at least n coordinates.

We will use this result to prove the theorem and return to prove this technical result afterwards. Let us write $G=\Phi_{1}$. Consider now the projection $P: I^{n} \times I \longrightarrow I^{n}$.

Claim: The intersection $P G^{-1}(A \backslash C) \cap P G^{-1}(B \backslash C)$ is empty.
To see this, let $y=P(z) \in P G^{-1}(A \backslash C)$. Suppose that $z \in G^{-1}(A \backslash C) \cap D$ for some D. Then $z \in M_{p+1}(D)$, so $y \in M_{p}(P(D))$. Similarly, if $y \in P G^{-1}(B \backslash C)$ then $y=P\left(z^{\prime}\right)$, $z^{\prime} \in D^{\prime}$, and $y \in L_{q}\left(P\left(D^{\prime}\right)\right)$. Thus $y \in M_{p}\left(P(D) \cap P\left(D^{\prime}\right)\right) \cap L_{q}\left(P(D) \cap P\left(D^{\prime}\right)\right)$, which is impossible if $n<p+q$.

By the claim, the closed subsets $P G^{-1}(A \backslash C)$ and $P G^{-1}(B \backslash C)$ of I^{n} are disjoint, so by the Urysohn lemma, there exists a Urysohn function $u: I^{n} \longrightarrow I$ such that

$$
u\left(P G^{-1}(A \backslash C)\right) \equiv 0, \quad u\left(P G^{-1}(B \backslash C)\right) \equiv 1
$$

We now define a homotopy $\Psi: I^{n} \times I \times I \longrightarrow X$ with $\Psi_{0}=G$ by the formula

$$
\Psi((x, t), s)=G(x,(1-s) t+s t u(x))
$$

We claim that this is again a homotopy through maps of the correct form and that $H=\Psi_{1}$ has image in B.

For instance, we check that $\Psi_{s}(x, 1) \in A$ for every $x \in I^{n}$. If $x \in P G^{-1}(B \backslash C)$, then $u(x)=1$, so $\Psi_{s}(x, 1)=G(x, 1-s+s)=G(x, 1) \in A$. On the other hand, if $x \notin P G^{-1}(B \backslash C$, then $\Psi_{s}(x, 1)=G(x, 1-s+s \cdot u(x)) \notin B \backslash C=X \backslash A$, so $\Psi_{s}(x, 1) \in A$.

The argument that $H=\Psi_{1}$ has image in B is similar. If $x \in P G^{-1}(A \backslash C$, then

$$
H(x, t)=G(x, t \cdot u(x))=G(x, 0) \in B
$$

On the other hand, if $x \notin P G^{-1}(A \backslash C)$, then

$$
H(x, t)=G(x, t \cdot u(x)) \notin A \backslash C=X \backslash B, \quad \Longrightarrow H(x, t) \in B
$$

This finishes the proof of the Blakers-Massey theorem.

2. Wed, Mar. 16

Last time, we proved the Blakers-Massey Theorem, assuming the following "technical" result. Recall that we had an excisive triad $(X ; A, B)$ with $C=A \cap B$ nonempty, that the inclusions $C \hookrightarrow A$ and $C \hookrightarrow B$ were p-connected and q-connected, respectively. We had a map $F: I^{n+1} \longrightarrow X$ and a subdivision of I^{n+1} into subcubes C such that the image of any C under F is entirely contained in A or in B. For simplicity, we will write n rather than $n+1$.
Proposition 2.1. There is a homotopy $\Phi: I^{n} \times I \longrightarrow X$ such that $\Phi_{0}=F$ and such that for any subcube $D \subseteq I^{n}$,
(1) If $F(D) \subseteq A$, then $\Phi(D) \subseteq A$, and similarly for B.
(2) If $F(D) \subseteq C$, then Φ is constant on D.
(3) If $F(D) \subseteq A$, then $\Phi_{1}^{-1}(A \backslash C) \cap D \subseteq M_{p+1}(D)$
(4) If $F(D) \subseteq B$, then $\Phi_{1}^{-1}(B \backslash C) \cap D \subseteq L_{q+1}(D)$,
where $M_{k}(D) \subseteq D$ is the subset consisting of points $\left(x_{i}\right)$ such that at least k of the coordinates satisfy $\frac{1}{2}<x_{i} \leq 1$ (after identifying the cube with I^{j}). Similarly, points in $L_{k}(D)$ satisfy $0 \leq x_{i}<\frac{1}{2}$ for at least k coordinates.

Proof. The homotopy will be built inductively over the faces of cubes (induction on dimension).
First, suppose that $D=\{d\}$ is a 0 -dimensional cube. If $F(d) \in C$, then we define Φ to be constant $(\Phi(d, t)=F(d) \forall t)$. If $F(d) \in A \backslash C$, then there is a path in A from $F(d)$ to a point in $C=B \cap A$, since the pair (A, C) is 0 -connected (meaning that $\left.\pi_{0}(C) \rightarrow \pi_{0}(B)\right)$. We use this path
for the homotopy Φ on $D=\{d\}$. This makes (1) and (3) hold since $\Phi_{1}^{-1}(A \backslash C) \cap D$ is empty. We do the same if $F(d) \in B \backslash C$.

Suppose now that we have a k-dimensional cube D, and that we have the homotopy Φ defined on all faces of D, satisfying (1)-(4) above. We then extend this homotopy to D, using that the inclusion $\partial D \hookrightarrow D$ is a cofibration. If $F(D) \subseteq C$, we must take the constant homotopy. If this is not the case, suppose without loss of generality that $F(D) \subseteq A$. Then since the homotopy Φ defined on the faces satisfies (1), we have a square

and so we get a homotopy G defined on all of D and satisfying (1). Unfortunately, property (3) may not yet hold, so we need to modify this construction. There are two cases.

Suppose first that $k=\operatorname{dim} D \leq p$. Recall that the inclusion $C \hookrightarrow A$ is assumed to be p-connected. Then there is a homotopy $H: D \times I \longrightarrow A$, rel ∂D with $H_{0}=G_{1}$ and $H_{1}(D) \subseteq C$. This holds because $\pi_{k}(A, C)=0$ since $k \leq p$. Now the concatenation $H * G$ is a homotopy Φ on D satisfying (3), since again $\Phi_{1}^{-1}(A \backslash C)$ is empty.

The other case is that $k=\operatorname{dim} D>p$. We need to deform $g=G_{1}$ so that the preimage of $A \backslash C$ in D will be in $M_{p+1}(D)$. Consider the map $h: I^{k} \longrightarrow I^{k}$ as in the picture. This is a map that is the identity on ∂I^{k} and that takes $M_{k}(D)$ isomorphically to I^{k}. Furthermore, $h \simeq \mathrm{id}$ rel ∂I^{k}. It follows that $g h \simeq g$ rel ∂I^{k}, and we claim that this is the desired homotopy. Suppose that $g h(z) \in A \backslash C$. If $z \in M_{k}(D)$, then certainly $M_{k}(D) \subseteq M_{p+1}(D)$ since $k \geq p+1$, so we are done. On the other hand, if $z \notin M_{k}(D)$, then $h(z)$ is in ∂I^{k}. But then $h(z)$ lies on a face of the cube and $h(z) \in g^{-1}(A \backslash C)$, so it follows that $h(z)$ is in M_{p+1} of the fact. Because of the definition of h, it follows that z is also in $M_{p+1}(D)$.

Eilenberg-Mac Lane spaces

Given a group G and $n \geq 0$, an Eilenberg-Mac Lane space $K(G, n)$ is a CW complex satisfying

$$
\pi_{i}(K(G, n)) \cong\left\{\begin{array}{cc}
G & i=n \\
0 & i \neq n
\end{array}\right.
$$

Note that if $n \geq 2$, then G must be abelian. For $n=0$, we can just take the discrete space G itself.
By the Hurewicz theorem, $K(G, n)$ has no homology in degrees $<n$, and $\mathrm{H}_{n}(K(G, n) ; \mathbb{Z}) \cong G$ if $n>1$. By the Universal Coefficient Theorem,

$$
\mathrm{H}^{n}(K(G, n) ; A) \cong \operatorname{Hom}(G, A) .
$$

For example, we have

$$
\mathrm{H}^{n}(K(\mathbb{Z}, n) ; \mathbb{Z}) \cong \mathbb{Z}, \quad \mathrm{H}^{n}(K(\mathbb{Z} / m, n) ; \mathbb{Z} / m) \cong \mathbb{Z} / m
$$

Examples

(1) S^{1} is a $K(\mathbb{Z}, 1)$.
(2) Since the homotopy groups of a product are the product of homotopy groups, it follows that $K(A, n) \times K(B, n)$ is a $K(A \oplus B, n)$. For example, the torus is a $K(\mathbb{Z} \oplus \mathbb{Z}, 1)$.
(3) The wedge $S^{1} \vee S^{1}$ is a $K\left(F_{2}, 1\right)$.
(4) The space $\mathbb{C P}^{\infty}$ is a $K(\mathbb{Z}, 2)$. Recall that for each n we have a fiber sequence

$$
S^{1} \hookrightarrow S^{2 n+1} \longrightarrow \mathbb{C P}^{n}
$$

The long exact sequence in homotopy gives $\pi_{2}\left(\mathbb{C P}^{n}\right) \cong \mathbb{Z}$ and $\pi_{i}\left(\mathbb{C P}^{n}\right)=0$ for $2<i<$ $2 n+1$. This implies that the infinite union $\mathbb{C P} \mathbb{P}^{\infty}$ has $\pi_{2}\left(\mathbb{C P}^{\infty}\right) \cong \mathbb{Z}$ and no other nontrivial homotopy groups.
(5) The space $\mathbb{R} \mathbb{P}^{\infty}$ is a $K(\mathbb{Z} / 2,1)$. Again, this comes from considering the fiber sequences

$$
S^{0}=\mathbb{Z} / 2 \hookrightarrow S^{n} \longrightarrow \mathbb{R P}^{n}
$$

The universal cover S^{n} of $\mathbb{R} \mathbb{P}^{n}$ is a double cover, so $\pi_{1}\left(\mathbb{R} \mathbb{P}^{n}\right)$ has order two, and the higher homotopy groups of $\mathbb{R}^{P^{n}}$ agree with those of S^{n}.
(6) The spaces $K(\mathbb{Z} / p, 1)$ for p odd are known as Lens spaces. They can be constructed in a similar manner. Recall that S^{1} acts on $S^{2 n+1}$ as complex multiplication. The group \mathbb{Z} / p sits insides S^{1} as the p th roots of unity. Taking the quotient of this action on $S^{2 n+1}$ gives a space with fundamental group \mathbb{Z} / p, and as we take a colimit over n we get an Eilenberg-Mac Lane space.
(7) For any group (or monoid) G, there is a "classifying space" $B G$, which is a $K(G, 1)$. Moreover, there are constructions of $B G$ which are functorial with respect to group homomorphisms. Recall that the multiplication map $G \times G \longrightarrow G$ is a homomorphism if and only if G is abelian. So for an abelian group G, the classifying space $B G$ inherits a multiplication and becomes an abelian monoid. We can then iterate B to get $B^{n} G=K(G, n)$.
The last example describes one way of producing Eilenberg-Mac Lane spaces, given the construction B. One can also construct $K(G, n)$'s by hand, as follows. Let $n \geq 2$ and suppose G is abelian. Write G as a cokernel

$$
\mathbb{Z}^{n_{2}} \longrightarrow \mathbb{Z}^{n_{1}} \longrightarrow G \longrightarrow 0
$$

of a map of free abelian groups. We then define the n-skeleton to be $X_{n}=\bigvee_{n_{1}} S^{n}$. We define the $(n+1)$-skeleton as the cofiber of the map

$$
\bigvee_{n_{2}} S^{n} \longrightarrow \bigvee_{n_{1}} S^{n}=X_{n} \longrightarrow X_{n+1}
$$

The cofiber X_{n+1} may have nontrivial homotopy in degrees $n+1$ and higher. We thus attach $n+2$-cells to kill π_{n+1}. The result may still have homotopy in degrees $n+2$ and higher, so we attach $n+3$-cells to kill π_{n+2}. Attaching cells to kill all higher homotopy groups, we arrive at a CW complex with the desired homotopy groups.

