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Abstract

We consider a 2D Schrödinger operator H0 with constant magnetic field defined on a strip of
finite width. The spectrum of H0 is absolutely continuous and contains a discrete set of thresholds.
We perturb H0 by an electric potential V , and establish a Mourre estimate for H = H0 + V when
V is periodic in the infinite direction of the strip, or decays in a suitable sense at infinity. In the
periodic case, for each compact subinterval I contained in between two consecutive thresholds,
we show as a corollary that the spectrum of H remains absolutely continuous in I, provided the
period and the size of the perturbation are sufficiently small. In the second case we obtain that
the singular continuous spectrum of H is empty, and any compact subset of the complement of
the thresholds set contains at most a finite number of eigenvalues of H, each of them having finite
multiplicity. Moreover these Mourre estimates together with some of their spectral consequences
generalize to the case of 2D magnetic Schrödinger operators defined on R2 for suitable confining
potentials modeling Dirichlet boundary conditions.
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1 Introduction and contents

1.1. The study of the quantum motion of a charged particle in a two-dimensional medium submitted
to an orthogonal magnetic field of constant strength is at the center of theoretical explanation of edge
currents in Hall systems, and is a source of interesting spectral problems. Some of them have been
rigourously investigated by many authors in recent years ([13, 6, 20, 12, 8, 4, 9, 10, 11, 2, 15, 16]).
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Edge currents have some connection with the integer quantum Hall effect. References to mathematical
papers describing the relationship between edge currents and the integer quantum Hall effect can be
found in [1, 19, 7, 3]. The quantum devices studied with regard to the integer quantum Hall effect are
distinguished by the fact that there is at least one edge. The existence of an edge profoundly changes
the transport and spectral properties of the quantum system. A state ψ carries an edge current if the
expectation of the velocity operator along the edge in the state ψ is non vanishing. Such a state is
spatially concentrated near the edge (see [6, 9, 10, 4, 15, 16]) and is thus called an edge state.
If the particle is constrained to a semi-infinite system like a half-plane, the existence of edge currents
can be shown through positive commutator estimates ([6, 12]). In this case, for an infinite system in
the y-direction, y is a bona-fide conjugate operator for the magnetic operator H under study in the
sense of Mourre, since the commutator [H, iy] is proportional to the velocity operator in the y-direction
along the edge, and the double commutator [[H0, y], y] = 2i. Thus for these one-edge geometries the
existence of edge currents is equivalent to the existence of intervals of absolutely continuous spectrum
for the corresponding Hamiltonian (see [6, 20, 12, 4, 15]).
This need not be the case, however, for more complicated edge geometries. For those situations, there
may be edge currents but the spectrum need not be absolutely continuous (cf. [8, 9, 10, 11, 4, 16]).
For instance, in the case of a strip of finite width, adding a second edge radically changes the picture
observed for one-edge geometries, since the Hall current has different signs on opposite edges. Hence
Mourre theory of positive commutators does not apply with y as a conjugate operator. Actually, for
these models, the existence of edge currents does not generally have any implication for the spectral
type of the operator. Indeed edge currents exist for the two-edge cylinder geometry, even though the
Hamiltonian has purely discrete spectrum (cf. [9, 11, 16]).
For an infinite strip, however, the presence of edge currents can be spectrally translated as the exis-
tence of intervals of absolutely continuous spectrum for H. This can be achieved by proving Mourre
estimates for appropriate conjugate operators (see [4, 2, 16]). One of the benefits of a local positive
commutator of this type is its stability under perturbation. It is therefore particularly useful to prove
the persistence of edge currents in presence of weak disorder (cf. [8, 4, 16]).

1.2. In this short paper based on the articles [2] and [16], we consider a 2D Schrödinger operator H0

with constant magnetic field defined on an infinite strip of finite width. We impose Dirichlet boundary
conditions on both edges of the strip. Using the invariance of the system in the infinite direction y
we prove that H0 is unitarily equivalent to an analytically fibered operator with real analytic band
functions {Ej}+∞j=1 such that kE′j(k) > 0 for all k ∈ R. Thus the spectrum of H0 is absolutely contin-
uous and contains a discrete set of thresholds {Ej(0)}+∞j=1. Further, from the monotonicity property
of the band functions, we define a family of conjugate operators Af , where f is taken in some subset
of C∞(R), involving a Mourre estimate for H0. Then we perturb H0 by an electric potential V and,
using the stability of local positive commutator [H0, Af ] under perturbation, establish a Mourre esti-
mate for H = H0 + V when 1) V is periodic in the infinite direction of the strip, or 2) V decays in a
suitable sense at infinity. In both cases we give an explicit expression, adapted to the perturbation V
under consideration, of the conjugate operator Af involved in the corresponding positive commutator
estimate. Then using Mourre theory (see [21, 5]), we derive some useful spectral information on the
system. In the periodic case, when the period and the size of V are taken sufficiently small, we obtain
that the spectrum of H remains absolutely continuous in any compact subinterval contained in between
two consecutive thresholds. In the second case we show that the singular continuous spectrum of H
is empty, while any compact subset of the complement of the thresholds set contains at most a finite
number of eigenvalues of H, each of them having finite multiplicity. As a conclusive remark we point
out that these Mourre estimates together with some of their spectral consequences generalize to the
case of 2D magnetic Schrödinger operators defined on R2 for suitable confining potentials modeling
Dirichlet boundary conditions.
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1.3. The paper is organized as follows. In Section 2 we describe the system under consideration. More
precisely, we introduce in Subsection 2.1 the main notations used throughout the article. In Subsection
2.2, we define the operator H0 under study and recall some of its basic spectral properties. Section
3 contains Mourre estimates for H0 + V and suitable perturbations V . In Subsection 3.2 we define a
family of conjugate operators for H0. In Subsection 3.3 we address the case of a periodic potential,
while Subsection 3.4 is devoted to decreasing perturbations. In Section 4 we extend some of the results
and techniques used in Section 3 to the case of magnetic Schrödinger operators defined in R2.
This is a review article so most of the techniques presented in this paper have already been published
in [2, 16], sometimes in a slightly different form. Here we present a unified version of the ideas used
in these two articles to establish Mourre estimates for 2D magnetic Schrödinger operators defined on
strip-like domains. More precisely, the statements of Subsection 3.4 have already been given in [2].
Those of Subsection 3.3 are inspired from the results obtained in [16] for the model defined in Section
4, while Proposition 4.1 and Theorem 4.1 in Section 4 extend and complete Proposition 1.1 of [16].

2 Definitions and main notations

2.1. In this subsection we introduce some basic notations used throughout the article. Let X1, X2 be
two separable Hilbert spaces. We denote by B(X1, X2) (resp., by S∞(X1, X2)) the class of bounded
(resp., compact) operators T : X1 → X2. If X1 = X2 = X we write B(X) or S∞(X) instead of B(X,X)
or S∞(X,X). Also, if the indication of the Hilbert space(s) where the corresponding operators act is
irrelevant, we omit it in the notations of the classes B and S∞.
Let T = T ∗. We denote by PO(T ) the spectral projection of T associated with the Borel set O ⊂ R.
Finally, we write px and py for −i ∂

∂x and −i ∂
∂y respectively.

2.2. In this subsection we define the operator H0 and collect some of its spectral properties that will
be needed in the sequel. For L > 0 set IL = (−L,L), SL = IL × R and consider the 2D Schrödinger
operator with constant scalar magnetic field b > 0

H0 := p2
x + (py − bx)2

defined on {u ∈ H2(SL) | u|∂SL
= 0} where H2(SL) denotes the second-order Sobolev space on SL.

Then we have

FH0F∗ =
∫ ⊕

R
Ĥ0(k)dk, (2.1)

where F is the partial Fourier transform with respect to y, and

Ĥ0(k) := p2
x + (k − bx)2, k ∈ R,

is the operator defined on D(Ĥ0) :=
{
w ∈ H2(IL)|w(−L) = w(L) = 0

}
. The spectrum σ(Ĥ0(k)) of

the operator Ĥ0(k), k ∈ R, is discrete and simple. We note {Ej(k)}∞j=1 the increasing sequence of
the eigenvalues of Ĥ0(k). They are even real analytic functions of k ∈ R (see [18]), and the minimax
principle implies

Ej(k) = k2(1 + o(1)), k → ±∞, j ∈ N := {1, 2, . . .}. (2.2)

Moreover, by [13, Theorem 2] we have

kE′j(k) > 0, k 6= 0, j ∈ N. (2.3)

Thus σ(H0) = σac(H0) = [E1(0),∞), where σac(H0) stands for absolutely continuous spectrum of H0,
and Ej := Ej(0), j ∈ N, are thresholds in σ(H0). We set Z :=

⋃
j∈N {Ej}.

Finally, each Er, r ∈ N, being a continuous increasing function in (0,+∞), we have the following
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Lemma 2.1. ([2, Lemma 3.1]) Let n ∈ N, E ∈ (En, En+1). Then there exists δ0 = δ0(E) ∈
(0,dist (E,Z)) such that the interval ∆E = [E − δ0, E + δ0] satisfies

E−1
r (∆E) = ∅, r ≥ n+ 1, (2.4)

and, if n ≥ 2,
E−1

r (∆E) ∩ E−1
s (∆E) = ∅, r 6= s, r, s = 1, . . . , n. (2.5)

3 Mourre estimates

3.1. We now examine the spectral properties of the Hamiltonian H = H0+V for suitable perturbations
V . We use the commutator method of Mourre [21, 5] (see also [14]). For the strip geometry, (2.3) shows
that the derivative E′j , j ∈ N, does not have a fixed sign. Consequently the local commutator used
for the one-edge geometries in [6, 12, 15] does not immediately apply. We preliminarily construct a
class of appropriate conjugate operators involving a Mourre estimate for H0 on suitable subintervals of
(En, En+1), n ∈ N. The advantage of this Mourre estimate is its stability under specific perturbations
V , and the spectral consequences that can be derived from it. Namely if V is T -periodic we show in
Section 3.3 that the absolutely spectrum of H persists on any subinterval of (En, En+1), n ∈ N, for
‖V ‖∞ and T sufficiently small. These results are similar to those of [8] obtained for a shifted harmonic
oscillator. Finally if V is H0-compact and satisfies some additional technical conditions, we obtain in
Section 3.4 that the singular continuous spectrum of H is empty.
For γ > 0 we define Hγ := D(Hγ/2

0 ) as a Hilbert space equipped with the scalar product
〈Hγ/2

0 u,H
γ/2
0 v〉L2(SL), u, v ∈ D(Hγ/2

0 ), and denote by H−γ , the closure of L2(SL) in the norm
‖H−γ/2

0 u‖L2(SL), u ∈ L2(SL).

3.2. In this subsection we define a family of conjugate operators for H0. To this purpose we consider
the set M of infinitely differentiable functions in R which together with all its derivatives grow no faster
than polynomials. For f ∈M we introduce the operator

Af = A∗f =
1
2
(
yf(py) + f(py)y

)
, (3.1)

originally defined in C∞0 (Ry, D(Ĥ0)) and then closed in L2(SL). Note that C∞0 (Ry, D(Ĥ0)) is dense in
H2 hence D(Af ) ∩H2 is dense in H2.

Lemma 3.1. ([2, Proposition 3.1]) Let n ∈ N, E ∈ (En, En+1). Assume that δ0 ∈ (0,dist(E,Z)) is
chosen to satisfy (2.4) and (2.5) according to Lemma 2.1. Let χ ∈ C∞0 (R), suppχ = [E − δ0, E + δ0]
and choose f ∈M such that

CE(δ0) := min
r=1,...,n

inf
k∈E−1

r ([E−δ0,E+δ0])
Re (f(k))E′r(k) > 0. (3.2)

Then we have
χ(H0)[H0, iAf ]χ(H0) ≥ CE(δ0)χ(H0)2, (3.3)

as a quadratic form on D(Af ) ∩H2.

Notice from (2.3) that there exists f ∈M satisfying (3.2).

Proof. For χ ∈ C∞0 (R) we have

χ(H0)[H0, iAf ]χ(H0) = 2F∗
( ∞∑

r,s=1

∫ ⊕

R
χ(Er(k))χ(Es(k))Re (f(k)) pr(k)(k − bx)ps(k)dk

)
F , (3.4)
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where
pr(k) := 〈·, ψr(·; k)〉ψr(·; k), k ∈ R, r ∈ N,

ψr(·; k) : IL → R being the real-valued normalized in L2(IL) eigenfunction of the operator Ĥ0(k)
corresponding to the eigenvalue Ej(k).
Using (2.4) and (2.5), we find that (3.4) reduces to

χ(H0)[H0, iAf ]χ(H0) = 2F∗
(

n∑
r=1

∫ ⊕

R
χ(Er(k))2Re (f(k)) 〈(k − bx)ψr(k), ψr(k)〉pr(k)dk

)
F .

This, combined with the Feynman-Hellmann formula

E′r(k) = 2〈(k − bx)ψr(k), ψr(k)〉,

yields

χ(H0)[H0, iAf ]χ(H0) = F∗
(

n∑
r=1

∫ ⊕

R
Re (f(k))E′r(k)χ(Er(k))2pr(k)dk

)
F ,

so (3.3) follows from this and (3.2).

Remark 3.1. Notice from the computations made in the proof of Lemma 3.1 that

[H0, iAf ] = 2Re (f(py)) vy,

where vy := py − bx is the velocity operator in the y-direction along the edges.

The benefit of a local positive commutator of the type of (3.3) is its stability under sufficiently small
perturbations. Nevertheless the commutator [V, iAf ] is generally unbounded unless V is y-independent.
Hence a Mourre inequality for H = H0 + V requires control in terms of the [H0, iA] as in Section 3.4,
except for some specific cases, as perturbations periodic in the y-direction.

3.3. First we address the case of a bounded y-periodic potential V with period T > 0 :

V (x, y + T ) = V (x, y), (x, y) ∈ SL. (3.5)

Following the idea of [16, Section 1.3], let Uα = eiαpy , α ∈ R, be the translation group in the y-direction
defined by

(Uαψ)(y) = ψ(y + α).

Since the representation is unitary, the operator

A := − i
2
(yUT − U−T y),

is self-adjoint on the domain D(y) of the operator multiplication by y (since Uα preserves this domain)
and is equal to the operator Af defined by (3.1) for f = −iUT ∈ M. The two main reasons for this
choice of f are, first, that (3.2) actually holds true for T sufficiently small,

min
k∈E−1

r ([E−δ0,E+δ0])
sin(Tk)E′r(k) > 0, r = 1, . . . , n, T ∈

(
0,

π

E−1
1 (E + δ0)

)
,

where E−1
1 denotes the function inverse to E1 : [0,∞) → R, and, second, the vanishing of the commu-

tator terms [V,U±T ] = 0, involving

[V, iA] =
1
2

(y[V,UT ]− [V,U−T ]y) = 0. (3.6)

For E ∈ R and δ > 0 set ∆E(δ) := (E − δ/2, E + δ/2).
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Proposition 3.1. Let n, E and δ0 be as in Lemma 3.1. Assume that (3.5) holds true for some
T ∈

(
0, π

E−1
1 (E+δ0)

)
and let A = Af be defined by (3.1) for f(k) = −ieiTk, k ∈ R. Let δ = δ(E) ∈ (0, δ0)

and ‖V ‖∞ be so small that the condition (3.15) holds true. Then there is a constant C > 0 such that

P∆E(δ)[H, iA]P∆E(δ) ≥ CP∆E(δ), (3.7)

where the commutator [H, iA] is understood as a bounded operator from H2 to L2(SL).

Proof. Taking into account (3.6), straightforward computations yield

[H, iA] = −2 sin(Tpy)(py − bx), (3.8)

on D(A) ∩H2. Hence [H, iA] extends to a bounded operator from H2 to L2(SL).
Further we decompose ψ ∈ P∆E(δ)(H)L2(SL) as

ψ = φ+ ξ, φ := P∆E(δ0)(H0)ψ, ξ := P∆c
E(δ0)(H0)ψ. (3.9)

Choose χ in Lemma 3.1 to be equal to one on ∆E(δ0), and multiply (3.3) from both sides by P∆E(δ0)(H0).
Thus, we obtain

〈φ, [H0, iA]φ〉 ≥ CE(δ0)‖φ‖2. (3.10)

Using (3.6)-(3.9), we find that

〈ψ, [H, iA]ψ〉 = 〈ψ, [H0, iA]ψ〉 = 〈φ, [H0, iA]φ〉+G(φ, ξ), (3.11)

where the perturbation term has the expression

G(φ, ξ) =
∫

R
sin(Tk)〈ξ̂(., k), (k − bx)ξ̂(., k)〉dk + 2Re

(∫
R

sin(Tk)〈φ̂(., k), (k − bx)ξ̂(., k)〉dk
)
, (3.12)

ξ̂ and φ̂ denoting respectively Fξ and Fφ. By (3.11)-(3.12),

〈ψ, [H, iA]ψ〉 ≥ 〈φ, [H0, iA]φ〉 − 2‖(py − bx)ξ‖‖ψ‖. (3.13)

Moreover the identity ‖ξ‖2 = 〈(H − E − V )ψ, (H0 − E)−1ξ〉 yields

‖ξ‖ ≤
(
δ + ‖V ‖∞

δ0

)
‖ψ‖ and ‖(py − bx)ξ‖2 ≤ 〈ξ,H0ξ〉 ≤ (En+1 + ‖V ‖∞)‖ξ‖‖ψ‖, (3.14)

whence

〈ψ, [H, iA]ψ〉 ≥

[
CE(δ0)

(
1−

(
δ + ‖V ‖∞

δ0

)2
)
− 2(En+1 + ‖V ‖∞)1/2

(
δ + ‖V ‖∞

δ0

)1/2
]
‖ψ‖2

by combining (3.10) with (3.13)–(3.14). The result follows from this provided δ and ‖V ‖∞ are taken
small enough so that(

δ + ‖V ‖∞
δ0

)2

+ 2CE(δ0)−1(En+1 + ‖V ‖∞)1/2

(
δ + ‖V ‖∞

δ0

)1/2

< 1. (3.15)

Notice from (3.8) that [[H, iA], iA] = 0 by direct calculation (see [16, Section 1.3]). Since [H, iA] extends
to a bounded operator from H2 into L2(SL), and the double commutator of H with A vanishes, the
Mourre estimate (3.7) combined with [5, Corollary 4.10] entail the following
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Corollary 3.1. Let n, E, δ0 and T be as in Proposition 3.1. If δ and ‖V ‖∞ satisfy (3.15), then the
spectrum of H in ∆E(δ) is absolutely continuous.

Proposition 3.1 and Corollary 3.1 are similar to [17, Proposition 3.3] and the results of [16, Section 1.3],
obtained for a slightly different model defined in Section 4.

Theorem 3.2. Let ∆ be a compact subinterval of (En, En+1), n ∈ N. If T and ‖V ‖∞ are sufficiently
small, then the spectrum of H in ∆ is absolutely continuous.

Proof. For E+ := supE∈∆(E + δ0(E)) ∈ (En, En+1], choose T ∈
(
0, π

E−1
1 (E+)

)
. Evidently

T ∈
(

0,
π

E−1
1 (E + δ0)

)
, E ∈ ∆, (3.16)

by (2.3). Assume ∆ ⊂ (En, En+1). For all E ∈ ∆, choose δ(E) ∈ (0, δ0(E)) and vE > 0 such that

Fn,E(vE) :=
(
δ(E) + vE

δ0(E)

)2

+ 2CE(δ0(E))−1(En+1 + vE)1/2

(
δ(E) + vE

δ0(E)

)1/2

< 1. (3.17)

Since ∆ is compact and ∆ ⊂ ∪E∈∆∆E(δ(E)) there exists a finite set {Ej}N
j=1 of energies in Ej ∈ ∆

such that
∆ ⊂ ∪N

j=1∆Ej
(δ(Ej)). (3.18)

Assume that ‖V ‖∞ ∈ (0,minj=1...,N vEj
). Since v 7→ Fn,Ej

(v), j = 1, . . . , N , is increasing, we have
Fn,Ej

(‖V ‖∞) < 1, by (3.17). This, combined (3.16) and Corollary 3.1, shows that the spectrum of H
is absolutely continuous in ∆Ej

(δ(Ej)) for j = 1, . . . , N . Hence the result follows from (3.18).

3.4. In this subsection we address the case of an electric potential V : SL → R decaying in the
y-direction in the sense that

V H−1
0 ∈ S∞. (3.19)

and
H−1

0 y
∂V

∂y
H−1

0 ∈ S∞. (3.20)

Due to (3.19) the operator H = H0 + V is self-adjoint on the domain of H0, and we have

σess(H) = σess(H0) = [E1,+∞).

Proposition 3.2. ([2, Proposition 3.1]) Assume (3.19) – (3.20). Let n, E, δ0 and χ be as in Lemma
3.1. Let A = Af be defined by (3.1) for f(k) = k, k ∈ R. Then there exists a constant C > 0 such that

P∆E(δ0)(H)[H, iA]P∆E(δ0)(H) ≥ CP∆E(δ0)(H) +K (3.21)

where the commutator [H, iA] is understood as a bounded operator from H2 into H−2 and K ∈ S∞.

Proof. We have

[H, iA] = [H0, iA] + [V, iA], [H0, iA] = 2p2
y − 2bxpy, [V, iA] = −y ∂

∂V
(x, y), (3.22)

by direct computations. Thus [H, iA] is a bounded operator from H2 into H−2 since this is the case
for [H0, iA] and H0[V, iA]H−1

0 is compact by (3.20).
Let χ ∈ C∞0 (R), supp χ = [E− δ0, E+ δ0]. Since mink∈E−1

r ([E−δ0,E+δ0])
kE′r(k) > 0 for all r = 1, . . . , n,

by (2.3), Lemma 3.1 yields
χ(H0)[H0, iA]χ(H0) ≥ Cχ(H0)2. (3.23)
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Further by (3.22),
χ(H)[H, iA]χ(H) = χ(H0)[H0, iA]χ(H0) +K0, (3.24)

where K0 := K1 +K2 −K3 and

K1 := χ(H0)[H0, iA] (χ(H)− χ(H0)) , K2 := (χ(H)− χ(H0)) [H0, iA]χ(H), K3 := χ(H)y
∂V

∂y
χ(H).

Assuming (3.19) we have χ(H)− χ(H0) ∈ S∞ by [2, Lemma 3.2]. Hence the operator
K1 = χ(H0)H0H

−1
0 [H0, iA] (χ(H)− χ(H0)) is compact since χ(H0)H0 and H−1

0 [H0, iA] extend to
bounded operators in L2(SL). Similarly, [H0, iA]H−1

0 and H0χ(H) = Hχ(H)−V χ(H) being bounded,
K2 = (χ(H)− χ(H0)) [H0, iA]H−1

0 H0χ(H) is compact. Further (3.20) entails that
K3 = χ(H)y ∂V

∂y χ(H) = χ(H)H0H
−1
0 y ∂V

∂y H
−1
0 H0χ(H) is compact too. Therefore, K0 = K1+K2−K3 ∈

S∞. Combining (3.23) and (3.24), we get

χ(H)[H, iA]χ(H) ≥ Cχ(H0)2 +K0 = Cχ(H)2 +K0 +K4, (3.25)

where K4 := C
(
χ(H0)2 − χ(H)2

)
∈ S∞ by substituting χ2 for χ in [2, Lemma 3.2].

Finally, we obtain (3.21) with K = P∆E(δ0)(H)(K0 +K4)P∆E(δ0)(H) ∈ S∞ upon choosing χ in (3.25)
to be equal to one on ∆E(δ0), and multiplying (3.25) from both sides by P∆E(δ0)(H).

Theorem 3.3. ([2, Theorem 3.1]) (i) Assume (3.19)–(3.20). Then H has at most finitely many
eigenvalues in any compact subinterval of R \ Z, and each eigenvalue has finite multiplicity.
(ii) Suppose moreover

H
−1/2
0 y

∂V

∂y
H−1

0 ∈ B, (3.26)

H−1
0 y2 ∂

2V

∂y2
H−1

0 ∈ B. (3.27)

Then σsc(H) = ∅.

Proof. Let ∆ ⊂ R\Z be a compact interval. If ∆ ⊂ (−∞, E1), then ∆∩σess(H) = ∅ since inf σess(H) =
E1, and (i) holds true. Assume ∆ ⊂ (En, En+1), n ∈ N. For each E ∈ ∆ choose δ0 = δ0(E) as in
Proposition 3.2. Then we have ∆ ⊂ ∪E∈∆∆E(δ0). Since ∆ is compact, there exists a finite set {Ej}N

j=1

of energies Ej ∈ ∆ such that
∆ ⊂ ∪N

j=1∆Ej
(δ0). (3.28)

The set D(A) ∩ H2 being dense in H2 and [H, iA] being a bounded operator from H2 into H−2, the
Mourre estimate (3.21) for the energy Ej , j = 1, . . . , N , combined with the results of [21], [5, Theorem
4.7] and [14] entail that H has at most finitely many eigenvalues in ∆Ej

(δ0), each eigenvalue having a
finite multiplicity. This together with (3.28), proves the first part of Theorem 3.3.
Fix E ∈ (En, En+1) \ σp(H), n ∈ N, and choose δ0 = δ0(E) as in Proposition 3.2. Then, arguing as in
the proof of [5, Lemma 4.8] and [2, Corollary 3.2], it follows from (3.21) that

P∆E(δ)(H)[H, iA]P∆E(δ)(H) ≥ C

2
P∆E(δ)(H) (3.29)

for δ ∈ (0, δ0) sufficiently small, the constant C being same as in (3.21). Assume moreover (3.26) – (3.27)
so [H, iA] extends to a bounded operator from H2 to H−1, and the second commutator [[H, iA], iA]
extends to a bounded operator fromH2 toH−2. Then we obtain σsc(H)∩

(
(En, En+1) \ σp(H)

)
= ∅, n ∈

N, by combining (3.29) with the results of [5, Corollary 4.10] and [14], and hence σsc(H)∩(En, En+1) = ∅,
n ∈ N, since the set (En, En+1) ∩ σp(H) is at most discrete. Finally, since E1 = inf σess(H) we have
σsc(H)∩ (−∞, E1) = ∅. Therefore, σsc(H)∩ (R \ Z) = ∅, proving the second part of Theorem 3.3 since
Z is discrete.
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4 Related models

4.1. In the physical literature (see e.g. [22, 23, 24, 25]) the Dirichlet boundary conditions at x = ±L,
are sometimes modeled by introducing an appropriate confining potential VL supported in the comple-
ment set of (−L,L) × R. Among them the “square well model” corresponding to a potential barrier
of the form VL(x) := 1 − χ(−L,L)(x), where χ(−L,L) denotes the characteristic function of the interval
(−L,L), is an idealization of the edge of an abrupt non-uniform electric potential (see [4, 16]). In the
remaining of this section we address the case of this particular model although most of the results
described below generalize for a wide class of more general confining potentials (see [16]).

4.2. In this subsection we introduce the Schrödinger operator considered in this model and review
some of its spectral properties that are needed in Section 4.3. Due to the translational invariance in
the y-direction, the 2D Schrödinger operator

H0,g := p2
x + (py − bx)2 + gVL(x), g > 0,

defined on the dense domain C∞0 (R2) and extended to a self-adjoint operator in L2(R2), admits a
fibre decomposition similar to (2.1). The associated fibred operators Ĥ0,g(k) have discrete and simple
spectrum which equals the increasing sequence {Ej,g(k)}∞k=1 of the corresponding eigenvalues. For all
j ∈ N and g > 0, Ej,g is an even real analytic function satisfying

(2j − 1)b ≤ Ej,g(k) < (2j − 1)b+ g, k ∈ R,

and
lim

k→+∞
Ej,g(k) = (2j − 1)b+ g.

Hence σ(H0,g) = σac(H0,g) = ∪∞j=1[Ej,g, (2j − 1)b + g], where Ej,g := infk∈R Ej,g(k) ∈ [(2j − 1)b, (2j −
1)b + g). Note that if g < 2b there are nontrivial open gaps ((2j − 1)b + g, Ej+1,g), j ∈ N, in σ(H0,g).
By [16, Lemma 5.3] there are two constants αj > 0 and µj > 0 independent of g, b and L, such that
we have

0 ≤ Ej,g − (2j + 1)b
b

≤ αje
−µjbL2

, j ∈ N,

for bL2 > 1. Thus upon choosing bL2 sufficiently large, a set of the form

∆n = ∆n(a, c) := [(2n+ a)b, (2n+ c)b], 1 < a < c < 3, n ∈ N, (4.30)

is contained in (En, En+1).
For all j ∈ N and k ∈ R, Ej,g(k) is easily seen to be an increasing function of g. This follows from the
Feynmann-Hellman formula

∂gEj,g(k) = 〈VLψj,g(.; k), ψj,g(.; k)〉 > 0,

where ψj,g(.; k) : R → R is the real-valued normalized in L2(R) eigenfunction of the operator Ĥ0,g(k)
associated to Ej,g(k). Moreover, in view of [16, Lemma 3.3] the “Dirichlet boundary condition model”
can be seen as the limit model as g goes to infinity of the “square well model”, in the sense that for
∆n, n ∈ N, as in (4.30), and bL2 sufficiently large, there is a constant ζn > 0 independent of g, such
that we have

0 ≤ Ej(k)− Ej,g(k) ≤ ζng
−1/2, k ∈ E−1

j,g (∆n), j = 1, 2, . . . , n, g ≥ (2n+ 3)b,

and

‖P∆n(Ĥ0(k))− P∆n(Ĥ0,g(k))‖ ≤ ζng
−1/2, k ∈ E−1

j,g (∆n), j = 1, 2, . . . , n, g ≥ (2n+ 3)b,
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the norm being taken in L2(SL).
Further,

E′j,g(k) = 2
∫

R
(k − bx)ψj,g(k)2dx, j ∈ N, k ∈ R, (4.31)

by the Feynman-Hellmann Theorem. Taking into account the eigenvalue equation Ĥ0,g(k)ψj,g(k) =
Ej,g(k)ψj,g(k) and the identity ∂k(k− bx)2 = −b−1∂x(k− bx)2, an integration by parts in (4.31) yields

E′j,g(k) =
g

b
(ψj,g(L; k)2 − ψj,g(−L; k)2).

Consequently the sign of the derivative E′j,g is determined by the trace of the corresponding eigen-
function along the two boundary components at x = ±L. Let ∆n, n ∈ N, be as in (4.30). Since
the domain x ≈ −L is in the classically forbidden region for energies Ej,g(k), for j = 1, 2, . . . , n and
k ∈ E−1

j,g (∆n)∩(0,+∞), the contribution ψ2
j,g(−L; k)2 will be exponentially small relative to ψj,g(L; k)2.

Namely, by [16, Lemma 2.2] there are two constants Cn > 0 and γn > 0, depending only on n, a and
c, such that

min
k∈E−1

j,g (∆n)∩(0,+∞)
E′j,g(k) ≥ Cnb

1/2, j = 1, . . . , n, (4.32)

provided g ≥ (2n+ 3)b and bL2 ≥ γn.
Finally the Ej,g being simple and continuous, a statement analogous to Lemma 2.1 holds true for the
“square well model” (see [16, Lemma 2.1]): there is δn,g > 0 such that any interval ∆ ⊂ (En,g, En+1,g)
with |∆| < δn,g, satisfies E−1

r,g (∆) = ∅ for r ≥ n+1 and E−1
r,g (∆)∩E−1

s,g (∆) = ∅ for r 6= s, r, s = 1, . . . , n.

4.3. Let ∆n, n ∈ N, be defined by (4.30). In this subsection we perturb H0,g by a suitable potential V
and outline that a Mourre estimate for Hg := H0,g + V can be deduced from (4.32) on any sufficiently
small subinterval of ∆n, under convenient assumptions on b, L and g. To make this statement more
precise, introduce the operator

A = − i
2
(yUα − U−αy), α =

π

2bL
,

where Uα = eiαpy , as in Section 3.3. By straightforward computations,

[H0,g, iA] = sin
( π

2bL
py

)
(py − bx), (4.33)

as quadratic forms on D(A) ∩D(H0,g). In light of (4.33), the main reason for this choice of A is given
by [16, Lemma 5.8]: for all g ≥ (2n+ 3)b and bL2 ≥ γn, γn being the same as in (4.32), we have

|k − bL| ≤ κnb
1/2, k ∈ E−1

j,g (∆n) ∩ (0,+∞), j = 1, . . . , n,

for some constant κn > 0 depending only on n, a and c. Indeed, L being fixed in (0,+∞), it follows
from this and from (4.32) that there is a constant βn > 0 depending only on n, a, c and L, such that
we have

min
k∈E−1

j,g (∆n)∩(0,+∞)
sin
( π

2bL
k
)
E′j,g(k) ≥ (Cn/2)b1/2, j = 1, . . . , n, (4.34)

for all g ≥ (2n+ 3)b and b ≥ βn.

Proposition 4.1. ([17, Proposition 3.4]) Let ∆n, n ∈ N, be as in (4.30) and ∆E(δ) = (E−δ/2, E+δ/
2) be contained in ∆n. Fix L > 0 and b ≥ βn, where βn is as in (4.34). Let A = Af be defined by (3.1)
for f(k) = iei π

2bL k, k ∈ R, and assume that

V, yV ∈ L∞(R2). (4.35)
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Then for all g ≥ (2n+ 3)b there is a constant C(δ) > 0, independent of E, such that

PHg
(∆E(δ))[Hg, iA]PHg

(∆E(δ)) ≥ C(δ)b1/2PHg
(∆E(δ)), (4.36)

provided δ, ‖V ‖∞ and ‖yV ‖∞ are taken so small that (4.39) holds true.

Proof. Fix b ≥ βn, g ≥ (2n+ 3)b and δ ∈ (0, δn,g). Due to (4.33)-(4.34) we get

PH0,g
(∆E(δ))[H0,g, iA]PH0,g

(∆E(δ)) ≥ (Cn/2)b1/2PH0,g
(∆E(δ)), (4.37)

by arguing as in the derivation of Lemma 3.1. Further, taking into account (4.35), we find

|〈ψ, [V, iA]ψ〉| ≤
(
2‖yV ‖∞ +

π

2bL
‖V ‖∞

)
‖ψ‖2, ψ ∈ D(A), (4.38)

by straightforward computations. Thus, by repeating the arguments of the proof of Proposition 3.1,
we obtain that (4.37)-(4.38) entail (4.36) provided δ, ‖V ‖∞ and ‖yV ‖∞ are taken so small that(

δ + ‖V ‖∞
δn,g

)2

+ 4C−1
n b−1/2

[
(En+1 + ‖V ‖∞)1/2

(
δ + ‖V ‖∞

δn,g

)1/2

+ 2‖yV ‖∞ +
π

2bL
‖V ‖∞

]
< 1.

(4.39)

Notice that the double commutator [[H, iA], iA] = [[V, iA], iA] extends to a bounded operator on L2(R2)
if y2V ∈ L∞(R2). Hence, by mimicking the proof of Theorem 3.2, we obtain the following

Theorem 4.1. Let ∆n, n ∈ N, be as in (4.30). Fix L > 0 and g ≥ (2n + 3)b. Assume (4.35) and
y2V ∈ L∞(R2). Then for all b sufficiently large the spectrum of H in ∆n is absolutely continuous
provided ‖V ‖∞ and ‖yV ‖∞ are small enough.

Remark 4.2. (i) Notice in particular that if b� 1 and δn,g is O(b), then (4.36)-(4.39) entail a Mourre
estimate for Hg on ∆E(δ) for perturbations of the size of b.
(ii) On the other hand, by assuming

∂V

∂y
, y
∂V

∂y
∈ L∞(R2)

in Proposition 4.1, instead of (4.35), it is not hard to check that (4.38) can be replaced by

|〈ψ, [V, iA]ψ〉| ≤
(( π

2bL

)2
∥∥∥∥∂V∂y

∥∥∥∥
∞

+
π

2bL

∥∥∥∥y ∂V∂y
∥∥∥∥
∞

)
‖ψ‖2, ψ ∈ D(A).

Thus, under the conditions specified in (i), the same conclusion holds true for perturbations V of size
O(b2).
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