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Flexible Concept of Function

Big Idea 1 from Developing Essential Understandings of Functions

Grades 9–12 :

The concept of function is intentionally broad and flexible, allowing it
to apply to a wide range of situations. The notion of function
encompasses many types of mathematical entities in addition to
“classical” functions that describe quantities that vary continuously.
For example, matrices and arithmetic and geometric sequences can
be viewed as functions.
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Types of Functions

Find some examples of functions for each of the following types of
functions.
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Types of Functions

1
Input: A real number

Output: A real number
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Types of Functions

2
Input: A real number

Output: An ordered pair of real numbers
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Types of Functions

3
Input: An ordered pair of real numbers

Output: A real number
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Types of Functions

4
Input: An ordered pair of real numbers

Output: An ordered pair of real numbers
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Types of Functions

5
Input: An ordered pair of real numbers

Output: A line
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Types of Functions

6
Input: An ordered triple of real numbers

Output: A parabola or a line
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Types of Functions

7
Input: A finite set of real numbers

Output: A real number
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Types of Functions

8
Input: A function

Output: A set of real numbers
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Types of Functions

9
Input: A polygon

Output: A real number
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Types of Functions

10
Input: A polynomial

Output: A polynomial
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Types of Functions

11
Input: A finite set of points in the plane

Output: A line
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Types of Functions

12
Input: A set of points in the plane

Output: A set of points in the plane
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Types of Functions

13
Input: A finite set

Output: An integer
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Types of Functions

14
Input: An ordered pair of real numbers

Output: An isometry

Carl Lee (UK) Functions Arkansas — July 2011 18 / 144



Types of Functions

15
Input: A polygon in the plane and a linear function of two variables

Output: A number

Carl Lee (UK) Functions Arkansas — July 2011 19 / 144



Types of Functions

16
Input: A line and a set of points in the plane

Output: A set of points in the plane
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Types of Functions

17
Input: A sequence of real numbers

Output: A real number
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Types of Functions

18
Input: A positive integer

Output: A real number integer
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Types of Functions

19
Input: A positive integer

Output: A set of positive integers
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Types of Functions

20
Input: A polyhedron

Output: An ordered triple of positive integers
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Types of Functions

21
Input: A polyhedron

Output: A real number
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Examples of Functions

For each of the following examples of functions, describe what type
of function it is, using the preceding list.
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Examples of Functions

1
Input: x

Output: 9x − 3
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Examples of Functions

2
Input: t

Output: (3 cos t, 3 sin t)
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Examples of Functions

3
Input: (x , y)

Output: (x + 4
3
, y − 8)
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Examples of Functions

4
Input: (x , y)

Output: (3x − 2y , 5x + 9y)
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Examples of Functions

5
Input: (x , y)

Output: x2 − y 2
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Examples of Functions

6
Input: (a, b, c)

Output: y = ax2 + bx + c
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Examples of Functions

7
Input: (x , y)

Output: (y , x)
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Examples of Functions

8
Input: x

Output: 2x2 − 3
5
x + 5
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Examples of Functions

9
Input: {a1, . . . , an}

Output: The median of a1, . . . , an
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Examples of Functions

10
Input: y = f (x)

Output: The set of x for which f (x) = 0
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Examples of Functions

11
Input: y = f (x)

Output: The maximum value of f (x)
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Examples of Functions

12
Input: A polygon

Output: Its perimeter
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Examples of Functions

13
Input: A polynomial

Output: Its derivative
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Examples of Functions

14
Input: A set of points in the plane

Output: A line of best fit
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Examples of Functions

15
Input: (x , y)

Output: (5x , 5y)
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Examples of Functions

16
Input: (x , y)

Output: (−y , x)
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Examples of Functions

17
Input: A set of points in the plane

Output: The rotation of this set by 90 degrees about the origin
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Examples of Functions

18
Input: A finite set

Output: The number of elements in the set
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Examples of Functions

19
Input: t

Output: (4t − 1
2
,−2t + 3)
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Examples of Functions

20
Input: A polynomial

Output: Its antiderivative (with constant term 0)
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Examples of Functions

21
Input: {a1, . . . , an}

Output: The mode of a1, . . . , an
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Examples of Functions

22
Input: A polyhedron

Output: Its volume
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Examples of Functions

23
Input: (m, b)

Output: The reflection isometry over the line y = mx + b
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Examples of Functions

24
Input: A polygon

Output: Its area
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Examples of Functions

25
Input: (a, b)

Output: The translation isometry (x , y) → (x + a, y + b)
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Examples of Functions

26
Input: A polygon and a linear function ax + by

Output: The maximum value of the function in the polygon
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Examples of Functions

27
Input: A line and a set of points in the plane

Output: The reflection of the the set in the line
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Examples of Functions

28
Input: A sequence of real numbers

Output: The limit of this sequence if it exists
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Examples of Functions

29
Input: (m, b)

Output: y = mx + b
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Examples of Functions

30
Input: A positive integer

Output: The set of its factors
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Examples of Functions

31
Input: {a1, . . . , an}

Output: a1+···+an

n

Carl Lee (UK) Functions Arkansas — July 2011 57 / 144



Examples of Functions

32
Input: A polyhedron

Output: (V , E , F )
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Examples of Functions

33
Input: A set of points in the plane

Output: The reflection of this set in the y -axis
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Examples of Functions

34
Input: A finite set

Output: The number of subsets
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Examples of Functions

35
Input: A positive integer

Output: The number of its factors
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Examples of Functions

36
Input: A polyhedron

Output: Its surface area
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Examples of Functions

37
Input: A positive integer n

Output: The sum 1 + · · · + n
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Examples of Functions

38
Input: θ

Output: The point (r = cos θ, θ) in polar coordinates
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Examples of Functions

39
Input: x

Output: sin x
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Representing Functions

Big Idea 5 from Developing Essential Understandings of Functions

Grades 9–12 :

Functions can be represented in multiple ways, including algebraic
(symbolic), graphical, verbal, and tabular representations. Links
among these different representations are important to studying
relationship and change.
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Representing Functions

An additional consideration: What technological tools can be used to
effective enhance the connections between multiple representations?

Try representing some of the previous examples using GeoGebra or
WolframAlpha. (Include sequences of numbers, sequences of
functions via differentiation, isometries, families of functions, linear
programming, factoring positive integers, subsets, . . . .)
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Linear Functions

Discuss the questions in Reflect 1.42 from Essential Understandings.

Then use GeoGebra to enact the various representations, and discuss
whether or how this can enhance understanding.
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Linear Functions

Find representations for the function

y = 3x

where x , and y are real. What if x is restricted to be a nonnegative
integer? What about other functions of the form y = ax , where a is
real?
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Linear Functions

Find representations for the function

z = 2x + 3y

where x , y , and z are real. What about other functions of the form
z = ax + by , where a and b are real?
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Linear Functions

Find representations for the function

(x2, y2) = (3x1, 3y1)

where x1, x2, y1, and y2 are real. Does this suggest a new
representation for a function of the form y = 3x? What about other
functions of the form

(x2, y2) = (ax1, ay1)

where a is real?

Carl Lee (UK) Functions Arkansas — July 2011 71 / 144



Linear Functions

Find representations for the function

z = 3w

where w and z are complex numbers. What about other functions of
the form z = aw where a is real?
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Linear Functions

Find representations for the function

z = iw

where w and z are complex numbers. What about other functions of
the form z = aw where a is complex?
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Sequences

Find representations for the function

f (n) =
n

∑

i=1

i .

Consider both explicit and recursive representations. What about
representing the Fibonacci sequence?

Try using WolframAlpha, http://www.wolframalpha.com, to guess
the explicit formula.
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Isometries

Find representations for the following isometries:

1 Translation by the vector (2,−3).

2 Reflections across the lines x = 0, y = 0, or y = x .

3 (Counterclockwise) rotations by 90◦, 180◦, or 270◦ about the
origin.
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Isometries

What isometries are being represented by the following GeoGebra
sketches:

1 transform3a.ggb

2 transform3b.ggb

3 transform3c.ggb

4 transform3d.ggb
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Matrices

Find representations for functions of the form

[

x2

y2

]

=

[

a b

c d

] [

x1

y1

]

.
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Trigonometric Functions

Motivations

Common Core State Standards

My 11th grade experience in public school

Reasoning and making connections
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Trigonometric Functions

From the Common Core State Standards:

Trigonometric Functions F-TF
Extend the domain of trigonometric functions using the unit circle

1. Understand radian measure of an angle as the length of the arc
on the unit circle subtended by the angle.

2. Explain how the unit circle in the coordinate plane enables the
extension of trigonometric functions to all real numbers,
interpreted as radian measures of angles traversed
counterclockwise around the unit circle.

3. (+) Use special triangles to determine geometrically the values
of sine, cosine, tangent for π/3, π/4 and π/6, and use the unit
circle to express the values of sine, cosine, and tangent for πx ,
π + x , and 2π − x in terms of their values for x , where x is any
real number.

4. (+) Use the unit circle to explain symmetry (odd and even) and
periodicity of trigonometric functions.
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Trigonometric Functions

Trigonometric Functions F-TF
Prove and apply trigonometric identities

8. Prove the Pythagorean identity sin2(θ) + cos2(θ) = 1 and use it
to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), or tan(θ)
and the quadrant of the angle.

9. (+) Prove the addition and subtraction formulas for sine, cosine,
and tangent and use them to solve problems.
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Trigonometric Functions

Similarity, Right Triangles, and Trigonometry G-SRT
Apply trigonometry to general triangles

9. (+) Derive the formula A = 1/2ab sin(C ) for the area of a
triangle by drawing an auxiliary line from a vertex perpendicular
to the opposite side.

10. (+) Prove the Laws of Sines and Cosines and use them to solve
problems.

11. (+) Understand and apply the Law of Sines and the Law of
Cosines to find unknown measurements in right and non-right
triangles (e.g., surveying problems, resultant forces).
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Logical Connections

“Think deeply of simple things”
—Motto of the Ross Program at Ohio State
We want see connections, and we want things to make sense.
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The Unit Circle

Let’s take as a definition that if P(x , y) is a point on the unit circle
determined by angle t, then cos t is defined to be x and sin t is
defined to be y . We can then define tan t = sin t

cos t
.
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Identities
Using no other knowledge of trigonometry

than this, make sense of basic trig identities:

1 sin2 t + cos2 t =

2 sin(−t) =

3 cos(−t) =

4 sin(2π − t) =

5 cos(2π − t) =

6 sin(π − t) =

7 cos(π − t) =

8 sin(π + t) =

9 cos(π + t) =

10 sin(π
2
− t) =

11 cos(π
2
− t) =
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Right Triangles

Other definitions for the trig functions of an acute angle t are:
Consider any right triangle with acute angle t. Then

sin t =
opposite side

hypotenuse
, cos t =

adjacent side

hypotenuse
, tan t =

opposite side

adjacent side
.

Explain why these definitions agree with the unit circle definitions
when t is acute.
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Polar Coordinates

Explain why x = r cos t and y = r sin t.
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SAS Area of Triangle

Explain why the area of triangle ∆ABC is given by

area ∆ABC =
1

2
bc sin A =

1

2
ac sin B =

1

2
ab sin C .

Be sure your argument works even if one angle is right or obtuse.
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Law of Sines

Prove that for any triangle ∆ABC ,

sin A

a
=

sin B

b
=

sin C

c
.
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Law of Cosines

Derive the Law of Cosines:

c2 = a2 + b2 − 2ab cos C .

Hint: Start with h2 + (c ′′)2 = a2. Replace c ′′ with c − c ′, and replace
h2 with b2 − (c ′)2. Be sure your argument works even if h falls
outside AB .

Carl Lee (UK) Functions Arkansas — July 2011 89 / 144



A Cosine Formula

Use the Law of Cosines to prove that

cos C =
x1x2 + y1y2

√

x2
1 + y 2

1

√

x2
2 + y 2

2

.

Notice that neither orientation nor difference with 2π make a
difference.
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Angle Addition and Subtraction Formulas

Use the Cosine Formula to prove

cos(s − t) = cos s cos t + sin s sin t.

Then prove

cos(s + t) = cos(s − (−t)) = cos s cos t − sin s sin t.

(Angles are oriented counterclockwise.)
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Angle Addition and Subtraction Formulas

Use sin(s + t) = cos(π
2
− (s + t)) = cos((π

2
− s) − t) to prove

sin(s + t) = sin s cos t + cos s sin t.

Then prove
sin(s − t) = sin s cos t − cos s sin t.
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Double Angle Formulas

Prove that
sin 2t = 2 sin t cos t

and
cos 2t = cos2 t − sin2 t

= 1 − 2 sin2 t

= 2 cos2 t − 1.
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Half Angle Formulas

Prove that

sin
t

2
=

√

1 − cos t

2

and

cos
t

2
=

√

1 + cos t

2
.
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Rotation Formula

(Angles are oriented counterclockwise.) Prove that

x2 = x1 cos t − y1 sin t,
y2 = x1 sin t + y1 cos t.
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Rotation Formula

In matrix form, this is

[

x2

y2

]

=

[

cos t − sin t

sin t cos t

] [

x1

y1

]

.

Explain why the following formula holds (“undoing” the rotation):

[

x1

y1

]

=

[

cos t sin t

− sin t cos t

] [

x2

y2

]

.
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Complex Numbers

Explain why the complex number x + iy can be represented in the
complex plane as the point (x , y), and why it can also be expressed
as r(cos t + i sin t) (sometimes abbreviated r cis t). (We call r the
modulus of the complex number, and t its argument.)
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Complex Multiplication

Prove that multiplying two complex numbers r1(cos t1 + i sin t1) and
r2(cos t2 + i sin t2) results in the complex number
r1r2(cos(t1 + t2) + i sin(t1 + t2)). That is to say, we multiply the
moduli and add the angles (arguments).
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Complex Multiplication

1 Recognizing that the x-axis corresponds to the real numbers,
show that i2 = −1.

2 Geometrically and algebraically determine all complex numbers x

such that x4 = 1.

3 Geometrically and algebraically determine all complex numbers x

such that x6 = 1.

4 Geometrically and algebraically find all the square roots of i .
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Complex Multiplication

Motivation for the preceding from the Common Core State

Standards:
The Complex Number System N-CN
Represent complex numbers and their operations on the complex
plane.

4. (+) Represent complex numbers on the complex plane in
rectangular and polar form (including real and imaginary
numbers), and explain why the rectangular and polar forms of a
given complex number represent the same number.

5. (+) Represent addition, subtraction, multiplication, and
conjugation of complex numbers geometrically on the complex
plane; use properties of this representation for computation. For
example, (1 +

√
3i)3 = 8 because (1 +

√
3i) has modulus 2 and

argument 120◦.
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Transforming Functions and Functions for

Transformations

Motivations;

1 Essential Understandings

2 Common Core State Standards

3 My 11th grade experience in public school
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Transforming

Big Idea 4 from Developing Essential Understandings of Functions

Grades 9–12 :

Functions can be combined by adding, subtracting, multiplying,
dividing, and composing them. Functions sometimes have inverses.
Functions can often be analyzed by viewing them as made from other
functions.
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Transforming

Common Core State Standards:

High School — Geometry

The concepts of congruence, similarity, and symmetry can be
understood from the perspective of geometric transformation.
Fundamental are the rigid motions: translations, rotations,
reflections, and combinations of these, all of which are here assumed
to preserve distance and angles (and therefore shapes generally).
Reflections and rotations each explain a particular type of symmetry,
and the symmetries of an object offer insight into its attributes–as
when the reflective symmetry of an isosceles triangle assures that its
base angles are congruent.
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Translation

Translate the given set by the vector (−2, 1).
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Translation

If the set is defined by the equation y1 = x2
1 , and the translation is

defined by
x2 = x1 − 2,
y2 = y1 + 1,

give the equation for the transformed set (in terms of x2 and y2).
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Translations

In general, if a set described by an equation in x1 and y1 is translated
by the vector (h, k), how do you get the equation of the transformed
set?

Try this: What is the resulting equation when a unit circle about the
origin is translated by the vector (3,−4)?
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Dilations

Dilate the given set by a scaling factor of 2 using the origin as the
center of dilation.
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Dilations

If the set is defined by the equation y1 = x2
1 , and the dilation is

defined by
x2 = 2x1,
y2 = 2y1,

give the equation for the transformed set.
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Scalings

Scale the given set with respect to the origin by a factor of 3 parallel
to the x-axis and by a factor of 2 parallel to the y -axis.
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Scalings

If the set is defined by the equation y1 = x2
1 , and the scaling is

defined by
x2 = 3x1,
y2 = 2y1,

give the equation for the transformed set.
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Scalings

In general, if a set described by an equation in x1 and y1 is scaled
with respect to the origin by a factor a parallel to the x-axis and by a
factor of b parallel to the y -axis, how do you get the equation of the
transformed set?

Try this: What is the resulting equation when a unit circle about the
origin is scaled by a factor of 1

2
parallel to the x-axis and by a factor

of 3 parallel to the y -axis?
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Translations and Scalings

Try this with GeoGebra: Make four sliders, say, for a, b, c , and d .
Define a function f (x), such as f (x) = sin(x). Then define
g(x) = a ∗ f (b ∗ (x − c)) + d , and watch what happens when you
move the sliders.
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Reflections

1 Reflect the given set across the x-axis.

2 Reflect the given set across the y -axis.

3 Reflect the given set across the line y = x .
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Reflections

Write formulas for each of the reflections.

If the set is defined by the equation y1 = x2
1 , give the equations for

the transformed sets.
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Reflections

In general, if a set described by an equation in x1 and y1 is reflected
across one of the previous lines, how do you get the equation of the
transformed set?
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Reflections

What can you deduce from your answers about the symmetry of the
set?

What can you deduce from your answers about finding the inverse of
a function described by y = f (x)?
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Rotations

1 Rotate the given set 90◦ counterclockwise about the origin.

2 Rotate the given set 180◦ counterclockwise about the origin.
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Rotations

Write formulas for each of the rotations.

If the set is defined by the equation y1 = x2
1 , give the equations for

the transformed sets.
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Rotations

In general, if a set described by an equation in x1 and y1 is rotated
counterclockwise by one of the above angles, how do you get the
equation of the transformed set?
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Rotations

Now try this: What is the resulting equation if the ellipse described by

x2

4
+

y 2

9
= 1

is rotated counterclockwise 45◦ about the origin?
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Completing the Square

Consider the parabola given by the equation y1 = 2x2
1 − 12x1 + 23.

How can we translate it so that the vertex is at the origin? If the
translation is given by x2 = x1 + h and y2 = y1 + k , then we have

y2 − k = 2(x2 − h)2 − 12(x2 − h) + 23

or
y2 = 2x2

2 + (−4h − 12)x2 + 2h2 + 12h + 23 + k .

We want −4h − 12 to be zero, so h = −3.
We also want 2h2 + 12h + 23 + k = 0 so k = −5.
Then y2 = 2x2

2 is the equation of the translated parabola.
So the equation of the original parabola is y1 − 5 = 2(x1 − 3)2 which
has vertex (3, 5).
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More Rotations
Problem from my High School course:
What is the resulting equation if the parabola described by y1 = x2

1 is
rotated counterclockwise about the origin by the angle t having
sin t = 7

25
and cos t = 24

25
?

We use the rotation formulas derived earlier:
[

x1

y1

]

=

[

cos t sin t

− sin t cos t

] [

x2

y2

]

.

Substituting, we have

− 7

25
x2 +

24

25
y2 =

(

24

25
x2 +

7

25
y2

)2

which simplifies to

576x2 + 336xy + 49y 2 + 175x − 600y = 0.
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Conics

Problem from my High School course:
Analyze the conic given by the equation

73x2 − 72xy + 52y 2 − 410x + 120y + 525 = 0.

We wish to apply a rotation by angle t that eliminates the xy term.
We use the rotation formulas derived earlier (with x1 = x and
y1 = y). Let’s abbreviate s = sin t and c = cos t.

x = cx2 + sy2,
y = −sx2 + cy2.

After substitution and simplification we find that the coefficient of
x2y2 is

42sc − 72(c2 − s2).
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Conics

We need an angle t so that this expression equals 0. Let T = 2t,
S = sin T , and C = cos T . Then S = 2sc and C = c2 − s2 by the
Double Angle Formulas. So we want an angle T with

21S − 72C = 0.

But this means tan T = S
C

= 24
7
. From this (and the Pythagorean

Theorem) we calculate S = 24
25

and C = 7
25

.
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Conics

Now we use the Half Angle Formulas to find s and c :

s =

√

1 − C

2
=

3

5
,

c =

√

1 + C

2
=

4

5
.

Using these values of c and s, the rotated conic has equation

100x2
2 − 400x2 + 25y 2

2 − 150y2 + 525 = 0.
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Conics

Complete the two squares to get

100(x2
2 − 4x2 + 4) + 25(y 2

2 − 6y2 + 9) = 100,

or

(x − 2)2 +
(y − 3)2

4
= 1.

This is an ellipse with center (2, 3).
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Conics

So we have deduced that the original ellipse can be obtained from the
ellipse x2 + y2

4
= 1 by first translating it by (2, 3) and then rotating it

clockwise by the angle t with sin t = 3
5

and cos t = 4
5
.
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Modeling

Motivations

1 Common Core State Standards

2 Essential Understandings
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Modeling

Common Core State Standards

Mathematical Practice 4: Model with mathematics.

Mathematically proficient students can apply the mathematics they
know to solve problems arising in everyday life, society, and the
workplace. In early grades, this might be as simple as writing an
addition equation to describe a situation. In middle grades, a student
might apply proportional reasoning to plan a school event or analyze
a problem in the community. By high school, a student might use
geometry to solve a design problem or use a function to describe how
one quantity of interest depends on another. Mathematically
proficient students who can apply what they know are comfortable
making assumptions and approximations to simplify a complicated
situation, realizing that these may need revision later.
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Modeling

They are able to identify important quantities in a practical situation
and map their relationships using such tools as diagrams, two-way
tables, graphs, flowcharts and formulas. They can analyze those
relationships mathematically to draw conclusions. They routinely
interpret their mathematical results in the context of the situation
and reflect on whether the results make sense, possibly improving the
model if it has not served its purpose.
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Modeling

Big Idea 3 from Developing Essential Understandings of Functions

Grades 9–12 :

Functions can be classified into different families of functions, each
with its own unique characteristics. Different families can be used to
model different real-world phenomena.
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Fountains

Start GeoGebra and use the “Insert Image” command to paste a
picture in the background of an arc of water, such as
http://farm4.static.flickr.com/3258/2847369024 be4a45303a.jpg.
Try entering, and then modifying (e.g., via the Algebra window, or by
the various geometric transformations, such as translate and
dilate—try using a slider), a function whose graph is a parabola, to
match the shape of the arcs. You might try f (x) = a(b(x − c))2 + d

where a, b, c , and d are determined by sliders. Why is a parabola
appropriate?

Bouncing balls also follow parabolic paths — find a stop-action photo
to try, such as
http://people.rit.edu/andpph/photofile-sci/bouncing-ball-7810.jpg.
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St. Louis Arch

This time try to match an image of the St. Louis arch, which is a
catenary, having an equation of the form y = a

2
(ex/a + e−x/a).

Here is an image:
http://3547.voxcdn.com/photos/0/34/46457 l.jpg.
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Vibrating String

Try to match an image of a vibrating string with a sine function.
Here is an image, but you have to rotate it 90 degrees with some
other software before bringing it into GeoGebra:
http://people.rit.edu/andpph/text-figures/strings/vibration-setup-8181a.jpg.
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Nautilus

Try to match an image of the nautilus with a logarithmic spiral. Here
is an image:
http://www.gayot.com/blog/wp-content/uploads/2009/08/img 21831.jpg.
For the logarithmic spiral, given by r = aebθ, make sliders for a and b

and use the command
Curve[a ∗ e(bt) ∗ cos(t), a ∗ e(bt) ∗ sin(t), t, 0, 25]. Why does this
create a logarithmic spiral?
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Sunflower

Now try to match a spiral to a sunflower. Here is an image:
http://farm2.static.flickr.com/1278/694780262 8874b4f225.jpg.
How do you reverse the direction of the spiral?
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Curve Fitting

Go to the Data and Story Library (DASL),
http://lib.stat.cmu.edu/DASL/DataArchive.html. Select
“List All Topics”, then “Health”, then “Smoking and Cancer”. Select
the Datafile. Highlight the six columns of the data set (omit the
headers) and copy.
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Curve Fitting

Now open GeoGebra and select “Spreadsheet View” under “View”.
Click on cell A1. Then paste the date in. Highlight the last three
columns and press Delete to clear these cells. In cell D1 type
“=(B1,C1)”. This creates a point labeled D1, which will show up in
the graphics view. Highlight cell D1. Then grab the lower right-hand
corner and drag it down to create points D1 through D38. All of
these points will show up in the graphics view. You may want to
right-click the background of the graphics view to adjust the
minimum and maximum values of the axes in order to see the points
more clearly.
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Curve Fitting

To find the line of best fit, enter the following at the bottom of the
graphics view: FitLine[D1:D38]. To find the correlation coefficient,
enter CorrelationCoefficient[D1:D38].
Now experiment with other data sets, and other “Fit” Commands,
like FitPoly[D1:D38,2] or FitPoly[D1:D38,3].
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Circular Motion

Let’s use trig functions make a simplified model of a planet rotating
on its axis while revolving around its sun.

Start in GeoGebra by drawing a unit circle centered at the origin, to
represent the planet’s orbit. Make a slider, say a, with min and max
values 0 and 6.28, respectively. To place a point, say B , on this orbit
(for the planet’s center), enter (cos(a), sin(a)).

You can animate the slider by double-clicking on it, selecting
“Animation On” under Basic, and “Increasing” under Slider. A small
“play/pause” icon appears in the lower left of the view.
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Circular Motion

Now we will create a planet by pausing the animation and drawing a
circle with center B and radius 0.1. You can then select the circle
and fill its interior with a color if you wish.

Place a reference point, say, C , on the planet by entering
B + .1 ∗ (cos(a), sin(a)).

Turn the animation back on. You may wish to pause and adjust the
speed and the increment of the slider for smoother motion.
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Circular Motion

Notice that right now, the planet rotates exactly once about its axis
while it revolves once about the sun. The net effect for the
inhabitants of the planet is that the sun does not move across the
sky! (This is what our moon is doing with respect to the Earth.)

We can change this by changing the definition of C to be
B + .1 ∗ (cos(3a), sin(3a)). Now the planet rotates around its axis
three times during the year. Yet the inhabitants experience only two
days — why is that? Experiment with other numbers of days in the
year.

Can you add a moon?
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Some Technology Resources

Mathematics Education and Outreach Resources,
http://www.ms.uky.edu/∼lee/outreach/outreach.html.
My master list of useful resources.

GeoGebra, http://www.geogebra.org, for geometric and
algebraic investigations.

GeoGebra 5.0, http://www.geogebra.org/en/wiki/index.php/Release Notes GeoGebra 5.0, a
beta version of GeoGebra including 3D features.

Google SketchUp, http://sketchup.google.com, for
three-dimensional modeling.

WolframAlpha, http://www.wolframalpha.com, for online
calculation, including graphing, symbolic algebra.

Wolfram Demonstrations Project,
http://demonstrations.wolfram.com, for many illustrative
applets.
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Some Technology Resources

National Library of Virtual Manipulatives,
http://nlvm.usu.edu, for K–12 applets.

NCTM’s Illuminations, http://illuminations.nctm.org, for
activities and lessons.

Interactivate, http://www.shodor.org/interactivate, for
activities and lessons.

Data and Story Library, http://lib.stat.cmu.edu/DASL, for
many interesting data sets.

Common Core State Standards for Mathematics,
http://www.corestandards.org/the-standards.

Jing, http://www.techsmith.com/Jing, for capturing screen
images and making videos.

Dropbox, http://www.dropbox.com, for storing and sharing
files with others.
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