Name:

Worksheet 5 A&S100 11 October 2002

1. Complete the addition and multiplication tables for arithmetic modulo 5. Remember that each of your answers should be 0, 1, 2, 3, or 4.

+	0	1	2	3	4
0					
1					
2					
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} $					
4					
			-	-	
×	0	1	2	3	4
				0	-
0				0	1
$\begin{array}{c} 0 \\ 1 \end{array}$					-
$\begin{array}{c} 0 \\ 1 \\ 2 \end{array}$					-
$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$					1

2. Complete the addition and multiplication tables for arithmetic modulo 6. Remember that each of your answers should be 0, 1, 2, 3, 4 or 5.

+	0	1	2	3	4	5	
0							
1							
2							
3							
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $							
5							
\times	0	1	2	3	4	5	
0							
1							
2							
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} $							
4							

- 3. If there is a number b such that a + b = 0 then b is said to be the additive inverse of a. Find the additive inverse of each of the following numbers when sums are computed modulo 5 or state that none exists.
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4

Find the additive inverse of each of the following numbers when sums are computed modulo 6 or state that none exists.

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5
- 4. If there is a number b such that $a \times b = 1$ then b is said to be the *multiplicative inverse* of a. Find the multiplicative inverse of each of the following numbers when sums are computed modulo 5 or state that none exists.
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4

Find the multiplicative inverse of each of the following numbers when sums are computed modulo 6 or state that none exists.

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

5. A nonzero number a is said to be a zero divisor if there is a number $b \neq 0$ such that $a \times b = 0$.

- (a) List all zero divisors for arithmetic modulo 5.
- (b) List all zero divisors for arithmetic modulo 6. How do the zero divisors relate to 6?
- (c) Would you guess that arithmetic modulo 7 has zero divisors? Why or why not? If you think that arithmetic modulo 7 has zero divisors, which of 0, 1, 2, 3, 4, 5, and 6 do you suppose to be zero divisors?

- (d) Would you guess that 0 modulo 9 has zero divisors? Why or why not? If you think that arithmetic modulo 9 has zero divisors, which of 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 do you suppose to be zero divisors?
- 6. Find a number n that simultaneously satisfies all of the following conditions:
 - (a) $2 \le n \le 100$,
 - (b) $n \equiv 1 \pmod{2}$,
 - (c) $n \equiv 1 \pmod{3}$,
 - (d) $n \equiv 1 \pmod{4}$,
 - (e) $n \equiv 1 \pmod{5}$, and
 - (f) $n \equiv 1 \pmod{6}$
- 7. Can you find a number n that simultaneously satisfies all of the following conditions?
 - (a) $n \ge 2$,
 - (b) $n \equiv 1 \pmod{2}$,
 - (c) $n \equiv 1 \pmod{3}$,
 - (d) $n \equiv 1 \pmod{4}$,
 - (e) $n \equiv 1 \pmod{5}$,
 - (f) $n \equiv 1 \pmod{6}$,
 - (g) $n \equiv 1 \pmod{7}$,
 - (h) $n \equiv 1 \pmod{8}$,
 - (i) $n \equiv 1 \pmod{9}$, and
 - (j) $n \equiv 1 \pmod{10}$?

Can you find such a number if we also require that n < 3000?