\qquad

1. Develop a divisibility test for 64 and prove that your test works.
2. What do you suppose would be a good test for divisibility by 2^{k} where k is a positive integer?
3. Prove: A positive integer $N=a_{m} a_{m-1} \cdots a_{1} a_{0}$ is divisible by 25 if and only if the two digit number $a_{1} a_{0}$ is divisible by 25 .
4. How are the divisibility tests for $4=2^{2}$ and $25=5^{2}$ similar? Does a similar divisibility test work for $9=3^{2}$? Why or why not?
5. Find a UPC number for which the check digit does not detect the transposition of two adjacent digits.
6. The following problem was taken from
http://www.cut-the-knot.com/Generalization/div9.shtml a web site by Alexander Bogomolny.

Can you find the missing digit in the following equation?

$$
5109094 x 171709440000=21 \times 20 \times 19 \times 18 \times \ldots 3 \times 2 \times 1
$$

