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Note: Some of the text below comes from Martin Gardner’s articles in Scientific American
and some from Mathematical Circles by Fomin, Genkin, and Itenberg.

1 Fifteen

This is a two player game. Take a set of nine cards, numbered one (ace) through nine. They
are spread out on the table, face up. Players alternately select a card to add their hands,
which they place face up in front of them. The goal is to achieve a subset of three cards in
your hand so that the values of these three cards sum to exactly fifteen. (The ace counts as
1.)

This 1s an example of a game that is isomorphic to a well-known game: Tic-Tac-Toe.
Number the cells of a tic-tac-toe board with the integers from 1 to 9 arranged in the form of
a magic square.
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Then winning combinations correspond to triples of numbers that sum to 15.

2 Ones and Twos

Ten 1’s and ten 2’s are written on a blackboard. In one turn, a player may erase any two
numbers. If the two numbers erased are identical, they are replaced with a single 2. If they
are different, they are replaced with a 1. The first player wins if a 1 is left at the end, and
the second player wins if a 2 is left.

This is not much of a real game, because no matter what moves anyone makes, the second
player will win. Because there are fewer numbers on the board after each move, the game
must inevitably end with a single number. The sum of the initial set of numbers is even, and
every move preserves parity, so the sum remains even throughout. Thus the game must end
with a single 2.



3 100

This is a two player game. Begin with the number zero. Players alternately add a positive
integer from 1 to 6, inclusive, to the current running sum. The first player to exactly achieve
the number 100 wins.

This game illustrates the principle of winning positions. These are positions that are
desirable to achieve upon the completion of your move. A position is winning for player A if
every move by player B from that position leads to a losing position for B, and a position is
losing for A if there exists a move by B from that position that leads to a winning position
for B. There is a theorem that if a two person game is finite (definitely ends) and cannot end
in a tie, then either the first player or the second player must have a winning strategy. This
strategy amounts to always moving to a winning position. In practice it may be very difficult
to analyze the game to determine the winning positions, but in this game it s not—the
winning positions are those congruent to 100 mod 7, and hence congruent to 2 mod 7.

Note that tic-tac-toe can end in a tie, so the above theorem does not apply to tic-tac-toe.
However, that does not mean that there aren’t good strategies for playing tic-tac-toe well.

4 Two Pile Nim

This two person game is played with two piles of 10 coins each. On your move you select
one of the piles and take away a positive number of coins from that pile. The winner is the
player who takes the very last coin from the table.

This game illustrates the principle of symmetry. By copying the first player’s mowves,
the second player can win. The winning positions are those in which both piles have equal
numbers of coins. Another game that can be approached by the principle of symmetry: A
daisy has 12 petals (or 11 petals). Players take turns tearing off either a single petal, or two
petals right next to each other. The player who cannot do so loses.

5 Simultaneous Chess

This is really more of a puzzle. How can you play two games of chess simultaneously against
two opponents, and guarantee either winning at least one or else tying both?

Play different colors in the two games, and copy moves of your opponent from one game
when you make moves in the other game. Thus, you are really pitting your opponents against
each other.



6 Two Pile Nim 11

This two person game is played with two piles of 10 coins each. On your move you may
either take exactly one coin from one of the piles, or you may take exactly one coin from
each of the piles. The winner is the player who takes the very last coin from the table.
Work backwards from the final winning position (0,0) to determine other winning posi-
tions. Then prove that a position (a,b) is winning if and only if both a and b are even.

7 Queen

Place a queen on the bottom row, third cell from the left (c1) of an 8 x 8 chessboard. Players
alternate by moving the queen a positive amount right, upward, or diagonally right and
upwards. To win you must move the queen to the upper right cell (h8).

Work backwards to determine the winning positions.

8 Three Pile Nim

This time the game begins with three piles of coins, of sizes 3, 5, and 7. Two players
alternately select a pile and remove a positive number of coins from the chosen pile. The
player to remove the very last coin wins.

Winning positions here are not so obvious, but can be determined by working backwards.
It can be proved that winning positions (a, b, ¢) are those in which the nim-sum of the numbers
a®b®cis0. The nim-sum of numbers is computed as follows: Write the numbers in binary,
add these representations mod 2, and then convert the result back to base 10. In this way you
can assign a nim-value to every position, and win by always achieving positions of nim-value

0.

9 Kayles

Begin with a row of 10 touching coins. Think of these as bowling pins. Players alternately
remove either a single coin, or two touching coins. The first player to take the very last coin
wins.

This game (and others we have already seen) are impartial games, meaning that the set
of moves available to each player from a given position is the same. (So tic-tac-toe is not an
impartial game.) There is a theorem that nim-values can be assigned to the positions of every
finite impartial game in the following way: Final winning positions are assigned the value 0.



The value of any other position is the smallest nonnegative integer not occurring as a value
of any immediately subsequent position. This is known as the mex rule—the “minimum
excluded value.”

There is another theorem that if a finite impartial game is the sum of k other finite
impartial games—meaning that on your turn you are to select exactly one of the k games
and make a valid move in that game—then the nim-value of the game is the nim-sum of the
nim-values of the k games.

Using these results it is possible to determine the nim-value f(n) of a row of n coins in
Kayles, but it is a bit of a challenge to come up with a general formula.

On the other hand, if you are not interested in nim-values, but only a winning strategy,
the first player can always win by exploiting symmetry.

In general it may not be easy to easily determine the nim-values for positions in more
complicated impartial games, and there many games for which the nim-values have not been
successfully fully analyzed.

10 Hex

Hex is played on a diamond-shaped board made up of hexagons (see Figure 1). The number
of hexagons may vary, but the board usually has 11 on each edge. Two opposite sides of
the diamond are labeled “black”; the other two sides are “white.” The hexagons at the
corners of the diamond belong to either side. One player has a supply of black pieces; the
other, a supply of white pieces. The player alternately place one of their pieces on any one
of the hexagons, provided the cell is not already occupied by another piece. The objective
of “black” is to complete an unbroken chain of black pieces between the two sides labeled
“black.” “White” tries to complete a similar chain of white pieces between the sides labeled
“white.” See Figure 2 for an example of a path. There will almost certainly be pieces not on
the winning path, and there is no obligation to construct the path in any particular order.
All that is necessary to win is to have a path joining your two sides of the board somewhere
among all the pieces you have played.



WHITE BLACK

Figure 1: The Game of Hex






This is a good game to illustrate the existence of a winning strategy. First prove that the
game cannot tie. Of course, it must come to an end. Therefore either the first player or the
second player has a winning strateqy. You can prove by contradiction that the first player
has a winning strategy. Assume the second player has a winning strateqy. Then the first
player can play at an arbitrary location (which can only help, not hurt) and then pretend to
be the second player, using the second player’s winning strategy. (If at any point the winning
strateqy indicates he should play at the location of the initial arbitrary move, then he makes
another arbitrary move instead.) In this way the first player wins, which is a contradiction.
Therefore the first player must have a winning strategy.

Howewver, there is no known description of this winning strategy! We know it exists, but
we don’t know what it is.

11 Hex II

Hex II is played on the board shown in Figure 3. Its rules are the same as Hex. Black is to
play first.
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Figure 3: The Game of Hex II



This game is a “trick” because the dimensions of the board are not equal. There is a pair-
ing strategy so that if the player with the shorter span to cross (in this case White) moves
second, he/she can always win. See Martin Gardner’s article on Hex, reprinted from Scien-
tific American in The Scientific American Book of Mathematical Puzzles and Diversions.

12 Relatives of Tic-Tac-Toe

12.1 Three-Dimensional Tic-Tac-Toe

This is familiar to most people. It is played on a 3 x 3 x 3 board with the object of getting
three in a row, or on a 4 x 4 x 4 board with the object of getting four in a row. What is the
optimal strategy?

It 1s known that the first player can always win 3 x 3 x 3 and 4 X 4 X 4 tic-tac-toe.

12.2 Wild Tic-Tac-Toe

This is the same as tic-tac-toe, except that on your turn you may place either an X or an
O—your choice—in an empty cell. If this results in three-in-a-row with either symbol, then
you win. Try this also with a 3 x 3 x 3 board.

12.3 Toe-Tac-Tic

This is the same as tic-tac-toe, except that the first player to get three in a row loses. Try
this also with a 3 x 3 x 3 board.

12.4 Wild Toe-Tac-Tic

This is the same as wild tic-tac-toe, except that the first player to get three in a row loses.
Try this also with a 3 x 3 x 3 board.

12.5 Four-Dimensional Tic-Tac-Toe

Four-dimensional tic-tac-toe can be played on an imaginary hypercube by sectioning it into
two-dimensional squares. A 4 x 4 x 4 x 4 hypercube, for example, would be diagramed as
shown in Figure 4.

On this board a win of four in a row is achieved if four marks are in a straight line on
any cube that can be formed by assembling four squares in serial order along any orthogonal



Figure 4: Four-Dimensional Tic-Tac-Toe
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Figure 5: Four-Dimensional Tic-Tac-Toe
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or either of the two main diagonals. Figure 5 shows five examples of winning configurations.
For example, if you occupy the four cells labeled 2, you win.
You can extend constructions of this type to play tic-tac-toe of any dimension!

13 Bridg-It

A Bridg-It board is shown in Figure 6. If it is played on paper, one player uses a black
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Figure 6: The Game of Bridg-It

pencil for drawing a straight line to connect any pair of adjacent black dots, horizontally or
vertically but not diagonally. the other player uses a red pencil for similarly joining pairs
of red dots. Players take turns drawing lines. No line can cross another. The winner is the
first player to form a connected path joining the two opposite sides of the board that are his
color. Figure 7 shows the result of a game in which red has won.
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Figure 7: A Bridg-It Game in which Red has Won
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Martin Gardner describes a winning pairing strateqy for the first player in his article
Bridg-It and Other Games published in Martin Gardner’s New Mathematical Diversions
from Scientific American.

14 Thinking about Thinking

This is more of a puzzle than a game, but you might try this first with different combinations
of hats for the three people.

Three students — Alfred, Beth, and Carla — are blindfolded and told that either a red
or a green hat will be placed on each of them. After this is done, the blindfolds are removed;
the students are asked to raise a hand if they see a red hat, and to leave the room as soon
as they are sure of the color of their own hat. All three hats happen to be red, so all three
students raise a hand. Several minutes go by until Carla, who is more astute than the others,
leaves the room. How did she deduce the color of her hat?

15 More Thinking about Thinking

Two students, A and B, are chosen from a math class of highly logical individuals. They are
each given one positive integer. Each knows his/her own number, and is trying to determine
the other’s number. They are informed that their numbers are consecutive. In each of the
following scenarios, what can you deduce about the two numbers?

1. First Scenario

A: 1 know your number.

B: I know your number.
2. Second Scenario

A: 1 don’t know your number.
B: I know your number.

A: 1 know your number.
3. Third Scenario

A: 1 don’t know your number.

B: I don’t know your number.
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A: 1 know your number.

B: I know your number.
4. Fourth Scenario

I don’t know your number.
I don’t know your number.
I don’t know your number.
I don’t know your number.

I know your number.

D rEE D

I know your number.

16 Morra

This game is played by two players, R and C'. Each player hides either one or two silver
dollars in his/her hand. Simultaneously, each player guesses how many coins the other player
is holding. If R guesses correctly and C' does not, then C' pays R an amount of money equal
to the total number of dollars concealed by both players. If C' guesses correctly and R does
not, then R pays C' an amount of money equal to the total number of dollars concealed by
both players. If both players guess correctly or incorrectly, no money exchanges hands.

This is a classic example of a two-person zero-sum game. The game can be represented
by a matriz, in which the rows are labeled by the options for player R, the columns are labeled
by the options for player C', and the entries correspond to the amount paid by C to R for
those particular options (which is negative if C' wins). There is a theorem that every such
game has an optimal mized strategy for each player to maximize the expected gain by R and
to minimize the expected loss for C'. In the case of Morra, there is an optimal mixed strategy
that, if both players use, keeps the game even. Each player should “hold one, guess two” 3/5
of the time, and “hold two, guess one” 2/5 of the time.

Perhaps surprisingly, it turns out that if R announces his guess before C', then C' can alter
her strategy to tip the game a little bit in her favor. For a complete analysis, see Chvatal’s
book on Linear Programming, Chapter 15.

17 Set

This commercial game consists of a deck of 81 cards. Each card is made from one of three
symbols, in one of three quantities, in one of three colors, and one of three shadings. Thus
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there are four attributes, and each card can be represented by an ordered 4-tuple (a, b, ¢, d),
where each of a,b,c,d equals 1, 2, or e. A set is a collection of three cards such that for
each attribute they completely agree or completely disagree. Thus (2,3,1,1), (2,1,1,3), and
(2,2,1,2) constitute a set.

An array of 12 cards is dealt, and players try to find sets. If a player detects a set, then
he/she calls “set” and claims it, these three cards are given to the player, and three more
cards are dealt into the vacant spots. If there are no sets, then three more cards are dealt
to increase the size of the array. There is a penalty, say, of one set, if a player incorrectly
calls “set” without identifying one. When the deck is exhausted, the player with the most
sets is the winner. There is an official iPad app for this game that permits play for up to
four players.

It is very interesting to see how some fast some players can spot sets. Note that every
choice of two cards can be uniquely completed to a set. What is the mazimum number of
cards possible that is set-free?

18 Sprouts

The game of Sprouts begins with n spots on a sheet of paper. Even with as few as three
spots, Sprouts is more difficult to analyze than tic-tac-toe, so that it is best for beginners to
play with no more than three or four initial spots. A move consists of drawing a curve that
joins one spot to another or to itself and then placing a new spot anywhere along the curve.
These restrictions must be observed:

1. The curve may have any shape but it must not cross itself, cross a previously drawn
curve or pass through a previously made spot.

2. No spot may have more than three curves emanating from it.

Players take turns drawing curves. In normal sprouts, the recommended form of play,
the winner is the last person able to play.
This is a simple game with unknown winning strategy (I believe).

19 Further Reading

For discussion and analyses of many, many games, see Winning Ways for your Mathematical
Plays, by Berlekamp, Conway, and Guy.
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