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Simplicial Polytopes

How many faces of each dimension can a simplicial convex polytope
have?

Landmark book: Grünbaum, Convex Polytopes, 1967. New edition
with updates in 2003.
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Simplicial Complexes
Collection of subsets of a finite set closed under inclusion.

∅ 1 12 123
2 13 124
3 23 134
4 14 234
5 24 125
6 34 135

15 235
25 145
35 245
45 345
16
26
36

f -vector f = (f−1, f0, f1, f2) = (1, 6, 13, 10).
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Simplicial Complexes

To define 8(3):

8 =
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3

)
+
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1

2

)
= 2

Also 0(0) = 0.
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Simplicial Complexes

Theorem (Kruskal-Katona, 1963, 1968)

The vector (f−1, f0, . . . , fd−1) of positive integers is the f -vector of
some simplicial (d − 1)-dimensional complex ∆ if and only if

1 f−1 = 1, and

2 fj ≤ f
(j)
j−1, j = 1, 2, . . . , d − 1.

Kruskal 1963.
Katona 1968: shorter proof.
Clements-Lindström 1969: generalized the shifting technique.
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Simplicial Complexes
Sufficiency: For each j choose the first fj−1 j-subsets of N in co-lex
order.

1 6 13 10
∅ 1 12 123

2 13 124
3 23 134
4 14 234
5 24 125
6 34 135

15 235
25 145
35 245
45 345
16 126
26 136
36 236
46 146
56 246

346
156
256
356
456
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Simplicial Complexes

Necessity: Given a simplicial complex. By application of a certain
sequence of “shifting” or “compression” operations, transform it to a
co-lex simplicial complex with the same f -vector. Then verify that
the conditions must hold.
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Dehn-Sommerville Equations

What about simplicial complexes that are the boundaries of simplicial
convex polytopes?

f = (1, 10, 43, 102, 141, 108, 36)

f (t) = 1 + 10t + 43t2 + 102t3 + 141t4 + 108t5 + 36t6

h(t) = (1− t)6f (
t

1− t
) = 1 + 4t + 8t2 + 10t3 + 8t4 + 4t5 + t6

h = (1, 4, 8, 10, 8, 4, 1) = (h0, . . . , h6)

This is the h-vector.

f (t) = (1 + t)dh(
t

1 + t
)

So knowing h is equivalent to knowing f .
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Dehn-Sommerville Equations

Theorem (Dehn-Sommerville, 1905, 1927)

For a simplicial d-polytope, hi = hd−i , i = 0, . . . , bd/2c.

Dehn 1905: d = 4.
Sommerville 1927: general d .
Klee 1964: rediscovered but not formulated this way.
McMullen 1971: formulated them this way (with an index shift) and
recognized the connection with shelling.
They hold also for simplicial homology spheres.
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Dehn-Sommerville Equations

For a simplicial ball ∆, h(∆) determines h(∂∆).
Let Σ = ∆ ∪ (v · ∂∆). Note that ∂∆ and Σ are spheres.

h(∆) 1 2 1 1 0
+h(∂∆) · · · ·
= h(Σ) · · · · ·

h(∆) 1 2 1 1 0
+h(∂∆) 1 2 2 1
= h(Σ) 1 3 3 3 1

McMullen-Walkup 1971.
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Upper Bound Theorem

Theorem (Bruggesser-Mani, 1970)

The boundaries of convex polytopes are shellable.

Often implicitly assumed by early incomplete proofs of Euler’s
relation, pre-1900, pre-Poincaré.
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Upper Bound Theorem
Shellings of simplicial polytopes. Facets (maximal faces) are ordered
in such a way that among the new faces contributed by each new
facet there is a unique minimal new face.

facet type
1 2 5
2 3 5
3 4 5
1 4 5
1 2 6
2 3 6
3 4 6
1 4 6

0
1
1
2
1
2
2
3

hi equals the number of facets of type i .
h = (1, 3, 3, 1).
Reversible shellings imply the Dehn-Sommerville equations.
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Upper Bound Theorem

A facet of type i contributes a Boolean algebra of faces, changing
f (t) by adding

(1 + t)d−i t i = (1− t)d(
t

1− t
)i

McMullen 1970.
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Upper Bound Theorem

Cyclic polytope C (n, d): the convex hull of any set of n distinct
points on the moment curve m(t) = (t, t2, . . . , td).

Theorem (Upper Bound Theorem, McMullen, 1970)

fj(P) ≤ fj(C (n, d)), j = 0, . . . , d − 1, for all convex d-polytopes P
with n vertices.

“Conjectured” by Motzkin in 1957.
McMullen used an h-vector reformulation, and shelling, observing
that the Dehn-Sommerville equations are a consequence of the
reversibility of shelling orders.
Proof discovered while McMullen and Shephard were writing the
book The Upper Bound Conjecture. They did not change the title of
the book.
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Upper Bound Theorem
Gale’s Evenness Condition. vi = m(ti), t1 < · · · < tn.
Facets of C (8, 5):

1 2 3 4 5 6 7 8
1 2 3 4 5
1 2 3 5 6
1 3 4 5 6
1 2 3 6 7
1 3 4 6 7
1 4 5 6 7
1 2 3 7 8
1 3 4 7 8
1 4 5 7 8
1 5 6 7 8
1 2 3 4 8
1 2 4 5 8

2 3 4 5 8
1 2 5 6 8

2 3 5 6 8
3 4 5 6 8

1 2 6 7 8
2 3 6 7 8

3 4 6 7 8
4 5 6 7 8
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Upper Bound Theorem

Facet hyperplane for {m(ti1), . . . ,m(tid )}.

(t − ti1) · · · (t − tid ) = a0 + a1t + · · ·+ adt
d

yields the hyperplane

a1x1 + · · ·+ adxd = −a0.
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McMullen’s Conjecture

Bold conjecture made in 1971.

To define 8<3>:

8 =
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(
5
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)
= 10

Also 0<0> = 0.
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McMullen’s Conjecture

The vector (h0, h1, . . . , hd) of positive integers is the h-vector of
some simplicial d-dimensional convex polytope if and only if

1 h0 = 1,

2 hi = hd−i , i = 0, . . . b(d − 1)/2c, and

3 gi+1 ≤ g<i>
i , i = 1, 2, . . . , bd/2c − 1,

where g0 = 1 and gi = hi − hi−1, i = 0, . . . bd/2c.

Example:
h = (1, 4, 8, 10, 8, 4, 1)

g = (1, 3, 4, 2)

McMullen proved it for d ≤ 5 and also for f0 ≤ d + 3 (the latter
using Gale diagrams).
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M-Vectors

Order ideal of monomials: Collection of monomials over a finite set
of variables, closed under divisor.

1 x1 x2
1 x2x

2
3

x2 x2
2 x3

3

x3 x2
3

x2x3

M-vector = (1, 3, 4, 2), counting number of monomials of each
degree.
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M-Vectors

Theorem (Stanley, 1975)

The vector of nonnegative integers, (h0, h1, . . . , hd), is an M-vector if
and only if

1 h0 = 1, and

2 hi+1 ≤ h<i>
i , i = 1, 2, . . . , d .

Stanley 1975, using a result of Macauley 1927.
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M-Vectors

Sufficiency: For each i choose the first hi monomials of degree i in
co-lex order.

1 3 4 2
1 x1 x2

1 x3
1

x2 x1x2 x2
1x2

x3 x2
2 x1x

2
2

x1x3 x3
2

x2x3 x2
1x3

x2
3 x1x2x3

x2
2x3

x1x
2
3

x2x
2
3

x3
3

Carl Lee (UK) g -Theorem February 2018 21 / 38



M-Vectors

Necessity: Given an order ideal of monomials. By application of a
certain sequence of “shifting” or “compression” operations, transform
it to a co-lex order of monomials with the same M-vector. Then
verify that the conditions must hold.

Clements-Lindström 1969: generalized the shifting technique.
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Shellable Simplicial Complexes

Theorem (Stanley 1975)

The vector of nonnegative integers, h = (h0, h1, . . . , hd), is the
h-vector of some shellable simplicial (d − 1)-complex if and only if it
is an M-vector.
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Shellable Simplicial Complexes

Sufficiency: Not published by Stanley in 1975 that I could find, so
below is the proof I came up with.

List all monomials in h1 variables of degree at most d in co-lex order.
Next to these, list all cardinality d subsets of {1, . . . , h1 + d}, also in
co-lex order.

Select the co-lex order ideal of monomials associated with h. Select
the associated subsets. These will be the facets of the desired
simplicial complex, the order is a shelling order, and the type of each
facet is the degree of the associated monomial.
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Shellable Simplicial Complexes
Example: h = (1, 3, 4, 2).

monomial degree 1 2 3 4 5 6
1 ∗0 1 2 3
x1 ∗1 1 2 4
x2

1 ∗2 1 3 4
x3

1 ∗3 2 3 4
x2 ∗1 1 2 5
x1x2 ∗2 1 3 5
x2

1 x2 ∗3 2 3 5
x2

2 ∗2 1 4 5
x1x2

2 3 2 4 5
x3

2 3 3 4 5
x3 ∗1 1 2 6
x1x3 ∗2 1 3 6
x2

1 x3 3 2 3 6
x2x3 2 1 4 6
x1x2x3 3 2 4 6
x2

2 x3 3 3 4 6
x2

3 2 1 5 6
x1x2

3 3 2 5 6
x2x2

3 3 3 5 6
x3

3 3 4 5 6
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Shellable Simplicial Complexes

Necessity.
Let ∆ be a simplicial (d − 1)-complex with n vertices 1, . . . , n.
Consider the polynomial ring R = R[x1, . . . , xn].
For a monomial m = xa1

1 · · · xann in R the support of m is
supp(m) = {i : ai > 0}. Let I be the ideal of R generated by
square-free monomials m such that supp(m) 6∈ ∆.
The Stanley-Reisner ring or face ring of ∆ is A∆ := R/I . There is a
natural grading of A = A0 ⊕ A1 ⊕ A2 ⊕ · · · by degree.
Informally, we do calculations as in R but set any monomial to zero
whose support does not correspond to a face.
HIlbert series of A∆:

∞∑
i=0

dimAi t
i = f (

t

1− t
)
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Shellable Simplicial Complexes

Stanley proved that if ∆ is shellable, then there exist d elements
θ1, . . . , θd ∈ A1 (a homogeneous system of parameters) such that θi
is not a zero-divisor in A∆/(θ1, . . . , θi−1), i = 1, . . . , d . (I.e.,
multiplication by θi in A∆/(θ1, . . . , θi−1) is an injection.)
Equivalently, A is Cohen-Macaulay.

Let B = A∆/(θ1, . . . , θd) = B0 ⊕ B1 ⊕ · · · ⊕ Bd . Then∑
dimBi t

i = (1− t)d f (
t

1− t
) = h(t).

So dimBi = hi , i = 0, . . . , d .

Macaulay proved that there exists a basis for B as an R-vector space
that is an order ideal of monomials. Therefore h is an M-vector.
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Shellable Simplicial Complexes

Kind-Kleinschmidt 1979: Another proof that shellable complexes are
Cohen-Macaulay. (In German—my language exam.)

Stanley 1975: Proved simplicial spheres, shellable or not, are
Cohen-Macaulay, using a homological characterization of
Cohen-Macaulay complexes (see also Reisner 1976), and extended
the Upper Bound Theorem to them.
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Polytope Pairs

What is the maximum value of fj for convex d-polytopes with n
vertices, one of which has degree exactly k?

Klee 1975: Derived some bounds including a construction placing a
new point outside of C (n − 1, d) and taking the convex hull.

Billera 1978: Suggested using approaching this problem in light of
Stanley’s work.

L. 1978–79: Solution, plus an idea. . .
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The g -Theorem

Theorem (Billera-L 1981, Stanley 1980)

McMullen’s conjecture is true.

Comments on the letter “g”.
Sufficiency: Billera-L.
Necessity: Stanley.
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The g -Theorem

Sufficiency.
Given h = (h0, . . . , hd) satisfying McMullen’s conditions:

1 h0 = 1,

2 hi = hd−i , i = 0, . . . b(d − 1)/2c, and

3 gi+1 ≤ g<i>
i , i = 1, 2, . . . , bd/2c − 1,

where g0 = 1 and gi = hi − hi−1, i = 0, . . . bd/2c.

Example:
h = (1, 4, 6, 4, 1)

g = (1, 3, 2)
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The g -Theorem
List all monomials in g1 variables of degree at most bd/2c in co-lex
order. Next to these, list all facets of C (f0, d + 1) containing v1 and
having even right-end set, also in co-lex order. (f0 = h1 + d).

h = (1, 4, 6, 4, 1), g = (1, 3, 2)

monomial degree 1 2 3 4 5 6 7 8
1 0 1 2 3 4 5
x1 1 1 2 3 5 6
x2

1 2 1 3 4 5 6
x2 1 1 2 3 6 7
x1x2 2 1 3 4 6 7
x2

2 2 1 4 5 6
x3 1 1 2 3 7 8

x1x3 2 1 3 4 7 8
x2x3 2 1 4 5 7 8
x2

3 2 1 5 6 7 8
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The g -Theorem
Select the co-lex order ideal of monomials associated with g . Select
the associated subsets. These will be the facets of a shellable
simplicial complex, the order is a shelling order, and the type of each
facet is the degree of the associated monomial. Example:
g = (1, 3, 2).

monomial degree 1 2 3 4 5 6 7 8
1 ∗0 1 2 3 4 5
x1 ∗1 1 2 3 5 6
x2

1 ∗2 1 3 4 5 6
x2 ∗1 1 2 3 6 7
x1x2 ∗2 1 3 4 6 7
x2

2 2 1 4 5 6
x3 ∗1 1 2 3 7 8

x1x3 2 1 3 4 7 8
x2x3 2 1 4 5 7 8
x2

3 2 1 5 6 7 8
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The g -Theorem

The resulting simplicial complex, ∆, a “patch” on the boundary of
C (f0, d + 1), is a simplicial d-ball with h-vector equal to g padded
with a final string of 0’s.

Use the “boundary calculation” to determine the h-vector of its
boundary, ∂∆.

h(∆) 1 3 2 0 0 0
+ h(∂∆) · · · · ·
= h(Σ) · · · · · ·

h(∆) 1 3 2 0 0 0
+ h(∂∆) 1 4 6 4 1
= h(Σ) 1 4 6 6 4 1
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The g -Theorem

Using indeterminate ti for the points on the moment curve and the
cyclic polytope facet equations, carefully select a new point z outside
of C (f0, d + 1) and determine inequalities that must hold for ∆ to be
precisely visible from z . Then show that one can choose specific
values of ti . This part of the proof explicitly references the order ideal
of monomials and facet selection. (This is the hardest part of the
proof.)

Take the convex hull Q of C (f0, d + 1) and z , and let P be a
vertex-figure of z—the intersection of Q and a hyperplane separating
z from the other vertices. Then h(P) = h(∂∆).
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The g -Theorem
Necessity.
Recall the ring B = B0 ⊕ B1 ⊕ · · · ⊕ Bd with Hilbert series

h0 + h1t + · · ·+ hdt
d .

The Hard Lefschetz Theorem implies there is an element ω ∈ B1 such
that multiplication by ωd−2i is a bijection from Bi to Bd−i ,
i = 0, . . . , bd/2c, and so ω is not a zero divisor in
B0 ⊕ B1 ⊕ · · · ⊕ Bbd/2c−1.
Thus the Hilbert series for B/(ω) = C0 ⊕ C1 ⊕ · · · ⊕ Cbd/2c is

g0 + g1t + · · · gbd/2ct
bd/2c

(Multiply first half of h0 + h1t + · · ·+ hdt
d by (1− t).)

By Macaulay there is a basis for C that is an order ideal of
monomials. Therefore g is an M-vector.
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The g -Theorem

McMullen 1993 and 1996: New proof of necessity using weights and
his polytope algebra.
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Some Reflections
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