The g-Theorem

Carl Lee
University of Kentucky

February 2018

Simplicial Polytopes

How many faces of each dimension can a simplicial convex polytope have?

Landmark book: Grünbaum, Convex Polytopes, 1967. New edition with updates in 2003.

Simplicial Complexes

Collection of subsets of a finite set closed under inclusion.

\emptyset	1	12	123
	2	13	124
	3	23	134
	4	14	234
	5	24	125
	6	34	135
		15	235
		25	145
		35	245
		45	345
		16	
		26	
		36	

f-vector $f=\left(f_{-1}, f_{0}, f_{1}, f_{2}\right)=(1,6,13,10)$.

Simplicial Complexes

To define $8^{(3)}$:

$$
8=\binom{4}{3}
$$

Simplicial Complexes

To define $8^{(3)}$:

$$
8=\binom{4}{3}+\binom{3}{2}
$$

Simplicial Complexes

To define $8^{(3)}$:

$$
8=\binom{4}{3}+\binom{3}{2}+\binom{1}{1}
$$

Simplicial Complexes

To define $8^{(3)}$:

$$
\begin{aligned}
8 & =\binom{4}{3}+\binom{3}{2}+\binom{1}{1} \\
8^{(3)} & =\binom{4}{4}+\binom{3}{3}+\binom{1}{2}=2
\end{aligned}
$$

Also $0^{(0)}=0$.

Simplicial Complexes

Theorem (Kruskal-Katona, 1963, 1968)

The vector $\left(f_{-1}, f_{0}, \ldots, f_{d-1}\right)$ of positive integers is the f-vector of some simplicial ($d-1$)-dimensional complex Δ if and only if
(1) $f_{-1}=1$, and
(c) $f_{j} \leq f_{j-1}^{(j)}, j=1,2, \ldots, d-1$.

Kruskal 1963.
Katona 1968: shorter proof.
Clements-Lindström 1969: generalized the shifting technique.

Simplicial Complexes

Sufficiency: For each j choose the first $f_{j-1} j$-subsets of \mathbf{N} in co-lex order.

$$
\begin{aligned}
& \begin{array}{cccc}
1 & 6 & 13 & 10 \\
\hline \underline{\emptyset} & 1 & 12 & 123 \\
& 2 & 13 & 124
\end{array} \\
& \begin{array}{lll}
3 & 23 & 134
\end{array} \\
& \begin{array}{lll}
4 & 14 & 234
\end{array} \\
& \begin{array}{lll}
5 & 24 & 125
\end{array} \\
& \begin{array}{lll}
6 & 34 & 135
\end{array} \\
& 15235 \\
& 25145 \\
& 35245 \\
& 45 \quad 345 \\
& 16126 \\
& 26136 \\
& 36 \quad 236 \\
& 46 \quad 146 \\
& 56246 \\
& 346 \\
& 156 \\
& 256 \\
& 356 \\
& 456
\end{aligned}
$$

Simplicial Complexes

Necessity: Given a simplicial complex. By application of a certain sequence of "shifting" or "compression" operations, transform it to a co-lex simplicial complex with the same f-vector. Then verify that the conditions must hold.

Dehn-Sommerville Equations

What about simplicial complexes that are the boundaries of simplicial convex polytopes?

$$
\begin{gathered}
f=(1,10,43,102,141,108,36) \\
f(t)=1+10 t+43 t^{2}+102 t^{3}+141 t^{4}+108 t^{5}+36 t^{6} \\
h(t)=(1-t)^{6} f\left(\frac{t}{1-t}\right)=1+4 t+8 t^{2}+10 t^{3}+8 t^{4}+4 t^{5}+t^{6} \\
h=(1,4,8,10,8,4,1)=\left(h_{0}, \ldots, h_{6}\right)
\end{gathered}
$$

This is the h-vector.

$$
f(t)=(1+t)^{d} h\left(\frac{t}{1+t}\right)
$$

So knowing h is equivalent to knowing f.

Dehn-Sommerville Equations

Theorem (Dehn-Sommerville, 1905, 1927)

For a simplicial d-polytope, $h_{i}=h_{d-i}, i=0, \ldots,\lfloor d / 2\rfloor$.
Dehn 1905: $d=4$.
Sommerville 1927: general d.
Klee 1964: rediscovered but not formulated this way.
McMullen 1971: formulated them this way (with an index shift) and recognized the connection with shelling.
They hold also for simplicial homology spheres.

Dehn-Sommerville Equations

For a simplicial ball $\Delta, h(\Delta)$ determines $h(\partial \Delta)$.
Let $\Sigma=\Delta \cup(v \cdot \partial \Delta)$. Note that $\partial \Delta$ and Σ are spheres.

$$
\begin{array}{rccccc}
h(\Delta) & 1 & 2 & 1 & 1 & 0 \\
+h(\partial \Delta) & & \cdot & \cdot & \cdot & \cdot \\
\hline=h(\Sigma) & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}
$$

Dehn-Sommerville Equations

For a simplicial ball $\Delta, h(\Delta)$ determines $h(\partial \Delta)$.
Let $\Sigma=\Delta \cup(v \cdot \partial \Delta)$. Note that $\partial \Delta$ and Σ are spheres.

$$
\begin{array}{rccccc}
h(\Delta) & 1 & 2 & 1 & 1 & 0 \\
+h(\partial \Delta) & & \cdot & \cdot & \cdot & \cdot \\
\hline=h(\Sigma) & \cdot & \cdot & \cdot & \cdot & \cdot \\
h(\Delta) & 1 & 2 & 1 & 1 & 0 \\
+h(\partial \Delta) & & 1 & 2 & 2 & 1 \\
\hline=h(\Sigma) & 1 & 3 & 3 & 3 & 1
\end{array}
$$

McMullen-Walkup 1971.

Upper Bound Theorem

Theorem (Bruggesser-Mani, 1970)

The boundaries of convex polytopes are shellable.
Often implicitly assumed by early incomplete proofs of Euler's relation, pre-1900, pre-Poincaré.

Upper Bound Theorem

Shellings of simplicial polytopes. Facets (maximal faces) are ordered in such a way that among the new faces contributed by each new facet there is a unique minimal new face.

facet			type
1	2	5	0
2	3	5	1
3	4	5	1
1	4	5	2
1	2	6	1
2	3	6	2
3	4	6	2
1	4	6	3

h_{i} equals the number of facets of type i.
$h=(1,3,3,1)$.
Reversible shellings imply the Dehn-Sommerville equations.

Upper Bound Theorem

A facet of type i contributes a Boolean algebra of faces, changing $f(t)$ by adding

$$
(1+t)^{d-i} t^{i}=(1-t)^{d}\left(\frac{t}{1-t}\right)^{i}
$$

McMullen 1970.

Upper Bound Theorem

Cyclic polytope $C(n, d)$: the convex hull of any set of n distinct points on the moment curve $m(t)=\left(t, t^{2}, \ldots, t^{d}\right)$.

> Theorem (Upper Bound Theorem, McMullen, 1970) $f_{j}(P) \leq f_{j}(C(n, d)), j=0, \ldots, d-1$, for all convex d-polytopes P with n vertices.
"Conjectured" by Motzkin in 1957.
McMullen used an h-vector reformulation, and shelling, observing that the Dehn-Sommerville equations are a consequence of the reversibility of shelling orders.
Proof discovered while McMullen and Shephard were writing the book The Upper Bound Conjecture. They did not change the title of the book.

Upper Bound Theorem

Gale's Evenness Condition. $v_{i}=m\left(t_{i}\right), t_{1}<\cdots<t_{n}$.
Facets of $C(8,5)$:

1	2	3	4	5	6	7	8
1	2	3	4	5			
1	2	3		5	6		
1		3	4	5	6		
1	2	3			6	7	
1		3	4		6	7	
1			4	5	6	7	
1	2	3				7	8
1		3	4			7	8
1			4	5		7	8
1				5	6	7	8
1	2	3	4				8
1	2		4	5			8
	2	3	4	5			8
1	2			5	6		8
	2	3		5	6		8
		3	4	5	6		8
1	2				6	7	8
	2	3			6	7	8
		3	4		6	7	8

Upper Bound Theorem

Facet hyperplane for $\left\{m\left(t_{i_{1}}\right), \ldots, m\left(t_{i_{d}}\right)\right\}$.

$$
\left(t-t_{i_{1}}\right) \cdots\left(t-t_{i_{d}}\right)=a_{0}+a_{1} t+\cdots+a_{d} t^{d}
$$

yields the hyperplane

$$
a_{1} x_{1}+\cdots+a_{d} x_{d}=-a_{0}
$$

McMullen's Conjecture

Bold conjecture made in 1971.
To define $8^{<3>}$:

$$
8=\binom{4}{3}+\binom{3}{2}+\binom{1}{1}
$$

McMullen's Conjecture

Bold conjecture made in 1971.
To define $8^{<3>}$:

$$
\begin{gathered}
8=\binom{4}{3}+\binom{3}{2}+\binom{1}{1} \\
8^{<3>}=\binom{5}{4}+\binom{4}{3}+\binom{2}{2}=10
\end{gathered}
$$

Also $0^{<0>}=0$.

McMullen's Conjecture

The vector $\left(h_{0}, h_{1}, \ldots, h_{d}\right)$ of positive integers is the h-vector of some simplicial d-dimensional convex polytope if and only if
(1) $h_{0}=1$,
(2) $h_{i}=h_{d-i}, i=0, \ldots\lfloor(d-1) / 2\rfloor$, and
(3) $g_{i+1} \leq g_{i}^{<i>}, i=1,2, \ldots,\lfloor d / 2\rfloor-1$,
where $g_{0}=1$ and $g_{i}=h_{i}-h_{i-1}, i=0, \ldots\lfloor d / 2\rfloor$.
Example:

$$
\begin{gathered}
h=(1,4,8,10,8,4,1) \\
g=(1,3,4,2)
\end{gathered}
$$

McMullen proved it for $d \leq 5$ and also for $f_{0} \leq d+3$ (the latter using Gale diagrams).

M-Vectors

Order ideal of monomials: Collection of monomials over a finite set of variables, closed under divisor.

$$
\begin{array}{llll}
1 & x_{1} & x_{1}^{2} & x_{2} x_{3}^{2} \\
& x_{2} & x_{2}^{2} & x_{3}^{3} \\
& x_{3} & x_{3}^{2} & \\
& & x_{2} x_{3} &
\end{array}
$$

M-vector $=(1,3,4,2)$, counting number of monomials of each degree.

M-Vectors

Theorem (Stanley, 1975)

The vector of nonnegative integers, $\left(h_{0}, h_{1}, \ldots, h_{d}\right)$, is an M-vector if and only if
(1) $h_{0}=1$, and
(2) $h_{i+1} \leq h_{i}^{<i>}, i=1,2, \ldots, d$.

Stanley 1975, using a result of Macauley 1927.

M-Vectors

Sufficiency: For each i choose the first h_{i} monomials of degree i in co-lex order.

$$
\begin{array}{llll}
1 & 3 & 4 & 2 \\
\hline \underline{1} & x_{1} & x_{1}^{2} & x_{1}^{3} \\
& x_{2} & x_{1} x_{2} & x_{1}^{2} x_{2} \\
& \underline{x}_{3} & x_{2}^{2} & x_{1} x_{2}^{2} \\
& & x_{1} x_{3} & x_{2}^{3} \\
& & x_{2} x_{3} & x_{1}^{2} x_{3} \\
& & x_{3}^{2} & x_{1} x_{2} x_{3} \\
& & & x_{2}^{2} x_{3} \\
& & & x_{1} x_{3}^{2} \\
& & & \\
& & & x_{2} x_{3}^{2} \\
\hline
\end{array}
$$

M-Vectors

Necessity: Given an order ideal of monomials. By application of a certain sequence of "shifting" or "compression" operations, transform it to a co-lex order of monomials with the same M-vector. Then verify that the conditions must hold.

Clements-Lindström 1969: generalized the shifting technique.

Shellable Simplicial Complexes

Theorem (Stanley 1975)

The vector of nonnegative integers, $h=\left(h_{0}, h_{1}, \ldots, h_{d}\right)$, is the h-vector of some shellable simplicial $(d-1)$-complex if and only if it is an M-vector.

Shellable Simplicial Complexes

Sufficiency: Not published by Stanley in 1975 that I could find, so below is the proof I came up with.

List all monomials in h_{1} variables of degree at most d in co-lex order. Next to these, list all cardinality d subsets of $\left\{1, \ldots, h_{1}+d\right\}$, also in co-lex order.

Select the co-lex order ideal of monomials associated with h. Select the associated subsets. These will be the facets of the desired simplicial complex, the order is a shelling order, and the type of each facet is the degree of the associated monomial.

Shellable Simplicial Complexes

Example: $h=(1,3,4,2)$.

monomial	degree	1	2	3	4	5	6
1	$* 0$	1	2	3			
x_{1}	$* 1$	1	2		4		
x_{1}^{2}	$* 2$	1		3	4		
x_{1}^{3}	$* 3$		2	3	4		
x_{2}	$* 1$	1	2			5	
$x_{1} x_{2}$	$* 2$	1		3		5	
$x_{1}^{2} x_{2}$	$* 3$		2	3		5	
x_{2}^{2}	$* 2$	1			4	5	
$x_{1} x_{2}^{2}$	3		2		4	5	
x_{2}^{3}	3			3	4	5	
x_{3}	$* 1$	1	2				6
$x_{1} x_{3}$	$* 2$	1		3			6
$x_{1}^{2} x_{3}$	3		2	3			6
$x_{2} x_{3}$	2	1			4		6
$x_{1} x_{2} x_{3}$	3		2		4		6
$x_{2}^{2} x_{3}$	3			3	4		6
x_{3}^{2}	2	1				5	6
$x_{1} x_{3}^{2}$	3		2			5	6
$x_{2} x_{3}^{2}$	3			3		5	6
x_{3}^{3}	3				4	5	6

Shellable Simplicial Complexes

Necessity.
Let Δ be a simplicial $(d-1)$-complex with n vertices $1, \ldots, n$.
Consider the polynomial ring $R=\mathbf{R}\left[x_{1}, \ldots, x_{n}\right]$.
For a monomial $m=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ in R the support of m is $\operatorname{supp}(m)=\left\{i: a_{i}>0\right\}$. Let I be the ideal of R generated by square-free monomials m such that $\operatorname{supp}(m) \notin \Delta$.
The Stanley-Reisner ring or face ring of Δ is $A_{\Delta}:=R / I$. There is a natural grading of $A=A_{0} \oplus A_{1} \oplus A_{2} \oplus \cdots$ by degree. Informally, we do calculations as in R but set any monomial to zero whose support does not correspond to a face.
HIlbert series of A_{Δ} :

$$
\sum_{i=0}^{\infty} \operatorname{dim} A_{i} t^{i}=f\left(\frac{t}{1-t}\right)
$$

Shellable Simplicial Complexes

Stanley proved that if Δ is shellable, then there exist d elements $\theta_{1}, \ldots, \theta_{d} \in A_{1}$ (a homogeneous system of parameters) such that θ_{i} is not a zero-divisor in $A_{\Delta} /\left(\theta_{1}, \ldots, \theta_{i-1}\right), i=1, \ldots, d$. (l.e., multiplication by θ_{i} in $A_{\Delta} /\left(\theta_{1}, \ldots, \theta_{i-1}\right)$ is an injection.)
Equivalently, A is Cohen-Macaulay.
Let $B=A_{\Delta} /\left(\theta_{1}, \ldots, \theta_{d}\right)=B_{0} \oplus B_{1} \oplus \cdots \oplus B_{d}$. Then

$$
\sum \operatorname{dim} B_{i} t^{i}=(1-t)^{d} f\left(\frac{t}{1-t}\right)=h(t)
$$

So $\operatorname{dim} B_{i}=h_{i}, i=0, \ldots, d$.

Macaulay proved that there exists a basis for B as an \mathbf{R}-vector space that is an order ideal of monomials. Therefore h is an M-vector.

Shellable Simplicial Complexes

Kind-Kleinschmidt 1979: Another proof that shellable complexes are Cohen-Macaulay. (In German-my language exam.)

Stanley 1975: Proved simplicial spheres, shellable or not, are Cohen-Macaulay, using a homological characterization of Cohen-Macaulay complexes (see also Reisner 1976), and extended the Upper Bound Theorem to them.

Polytope Pairs

What is the maximum value of f_{j} for convex d-polytopes with n vertices, one of which has degree exactly k ?

Klee 1975: Derived some bounds including a construction placing a new point outside of $C(n-1, d)$ and taking the convex hull.

Billera 1978: Suggested using approaching this problem in light of Stanley's work.
L. 1978-79: Solution, plus an idea. . .

The g-Theorem

Theorem (Billera-L 1981, Stanley 1980)
McMullen's conjecture is true.
Comments on the letter " g ".
Sufficiency: Billera-L.
Necessity: Stanley.

The g-Theorem

Sufficiency.

Given $h=\left(h_{0}, \ldots, h_{d}\right)$ satisfying McMullen's conditions:
(1) $h_{0}=1$,
(3) $h_{i}=h_{d-i}, i=0, \ldots\lfloor(d-1) / 2\rfloor$, and
(0) $g_{i+1} \leq g_{i}^{<i>}, i=1,2, \ldots,\lfloor d / 2\rfloor-1$,
where $g_{0}=1$ and $g_{i}=h_{i}-h_{i-1}, i=0, \ldots\lfloor d / 2\rfloor$.
Example:

$$
\begin{gathered}
h=(1,4,6,4,1) \\
g=(1,3,2)
\end{gathered}
$$

The g-Theorem

List all monomials in g_{1} variables of degree at most $\lfloor d / 2\rfloor$ in co-lex order. Next to these, list all facets of $C\left(f_{0}, d+1\right)$ containing v_{1} and having even right-end set, also in co-lex order. $\left(f_{0}=h_{1}+d\right)$.

$$
h=(1,4,6,4,1), g=(1,3,2)
$$

monomial	degree	1	2	3	4	5	6	7	8
1	0	1	2	3	4	5			
x_{1}	1	1	2	3		5	6		
x_{1}^{2}	2	1		3	4	5	6		
x_{2}	1	1	2	3			6	7	
$x_{1} x_{2}$	2	1		3	4		6	7	
x_{2}^{2}	2	1			4	5	6		
x_{3}	1	1	2	3				7	8
$x_{1} x_{3}$	2	1		3	4			7	8
$x_{2} x_{3}$	2	1			4	5		7	8
x_{3}^{2}	2	1				5	6	7	8

The g-Theorem

Select the co-lex order ideal of monomials associated with g. Select the associated subsets. These will be the facets of a shellable simplicial complex, the order is a shelling order, and the type of each facet is the degree of the associated monomial. Example: $g=(1,3,2)$.

monomial	degree	1	2	3	4	5	6	7	8
1	$* 0$	1	2	3	4	5			
x_{1}	$* 1$	1	2	3		5	6		
x_{1}^{2}	$* 2$	1		3	4	5	6		
x_{2}	$* 1$	1	2	3			6	7	
$x_{1} x_{2}$	$* 2$	1		3	4		6	7	
x_{2}^{2}	2	1			4	5	6		
x_{3}	$* 1$	1	2	3				7	8
$x_{1} x_{3}$	2	1		3	4			7	8
$x_{2} x_{3}$	2	1		4	5		7	8	
x_{3}^{2}	2	1			5	6	7	8	

The g-Theorem

The resulting simplicial complex, Δ, a "patch" on the boundary of $C\left(f_{0}, d+1\right)$, is a simplicial d-ball with h-vector equal to g padded with a final string of 0 's.

Use the "boundary calculation" to determine the h-vector of its boundary, $\partial \Delta$.

$$
\begin{array}{ccccccc}
& h(\Delta) & 1 & 3 & 2 & 0 & 0 \\
+ & 0 \\
+ & h(\partial \Delta) & & \cdot & \cdot & \cdot & \cdot \\
\hline= & h(\Sigma) & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline
\end{array}
$$

The g-Theorem

The resulting simplicial complex, Δ, a "patch" on the boundary of $C\left(f_{0}, d+1\right)$, is a simplicial d-ball with h-vector equal to g padded with a final string of 0 's.

Use the "boundary calculation" to determine the h-vector of its boundary, $\partial \Delta$.

$$
\begin{array}{cccccccc}
& h(\Delta) & 1 & 3 & 2 & 0 & 0 & 0 \\
+ & h(\partial \Delta) & & \cdot & \cdot & \cdot & \cdot & \cdot \\
\hline= & h(\Sigma) & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
& h(\Delta) & 1 & 3 & 2 & 0 & 0 & 0 \\
+ & h(\partial \Delta) & & 1 & 4 & 6 & 4 & 1 \\
\hline= & h(\Sigma) & 1 & 4 & 6 & 6 & 4 & 1
\end{array}
$$

The g-Theorem

Using indeterminate t_{i} for the points on the moment curve and the cyclic polytope facet equations, carefully select a new point z outside of $C\left(f_{0}, d+1\right)$ and determine inequalities that must hold for Δ to be precisely visible from z. Then show that one can choose specific values of t_{i}. This part of the proof explicitly references the order ideal of monomials and facet selection. (This is the hardest part of the proof.)

Take the convex hull Q of $C\left(f_{0}, d+1\right)$ and z, and let P be a vertex-figure of z-the intersection of Q and a hyperplane separating z from the other vertices. Then $h(P)=h(\partial \Delta)$.

The g-Theorem

Necessity.
Recall the ring $B=B_{0} \oplus B_{1} \oplus \cdots \oplus B_{d}$ with Hilbert series

$$
h_{0}+h_{1} t+\cdots+h_{d} t^{d}
$$

The Hard Lefschetz Theorem implies there is an element $\omega \in B_{1}$ such that multiplication by $\omega^{d-2 i}$ is a bijection from B_{i} to B_{d-i}, $i=0, \ldots,\lfloor d / 2\rfloor$, and so ω is not a zero divisor in $B_{0} \oplus B_{1} \oplus \cdots \oplus B_{\lfloor d / 2\rfloor-1}$.
Thus the Hilbert series for $B /(\omega)=C_{0} \oplus C_{1} \oplus \cdots \oplus C_{\lfloor d / 2\rfloor}$ is

$$
g_{0}+g_{1} t+\cdots g_{\lfloor d / 2\rfloor} t^{\lfloor d / 2\rfloor}
$$

(Multiply first half of $h_{0}+h_{1} t+\cdots+h_{d} t^{d}$ by $(1-t)$.) By Macaulay there is a basis for C that is an order ideal of monomials. Therefore g is an M-vector.

The g-Theorem

McMullen 1993 and 1996: New proof of necessity using weights and his polytope algebra.

Some Reflections

