Carl Lee University of Kentucky

February 2018

Carl Lee (UK)

-

How many faces of each dimension can a simplicial convex polytope have?

Landmark book: Grünbaum, *Convex Polytopes*, 1967. New edition with updates in 2003.

Collection of subsets of a finite set closed under inclusion.

Ø

1	12	123
2	13	124
3	23	134
4	14	234
5	24	125
6	34	135
	15	235
	25	145
	35	245
	45	345
	16	
	26	
	36	

f-vector $f = (f_{-1}, f_0, f_1, f_2) = (1, 6, 13, 10).$

To define $8^{(3)}$:

$$8 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

* ロ > * 個 > * 注 > * 注 >

To define $8^{(3)}$:

$$8 = \begin{pmatrix} 4 \\ 3 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

* ロ > * 個 > * 注 > * 注 >

To define $8^{(3)}$:

$$8 = \binom{4}{3} + \binom{3}{2} + \binom{1}{1}$$

* ロ > * 個 > * 注 > * 注 >

To define 8⁽³⁾:

$$8 = \binom{4}{3} + \binom{3}{2} + \binom{1}{1}$$

$$8^{(3)} = \binom{4}{4} + \binom{3}{3} + \binom{1}{2} = 2$$

Also $0^{(0)} = 0$.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Theorem (Kruskal-Katona, 1963, 1968)

The vector $(f_{-1}, f_0, \ldots, f_{d-1})$ of positive integers is the f-vector of some simplicial (d-1)-dimensional complex Δ if and only if

1
$$f_{-1} = 1$$
, and
1 $f_j \le f_{j-1}^{(j)}$, $j = 1, 2, ..., d - 1$.

Kruskal 1963. Katona 1968: shorter proof. Clements-Lindström 1969: generalized the shifting technique.

Sufficiency: For each *j* choose the first f_{j-1} *j*-subsets of **N** in co-lex order.

1	6	13	10
Ø	1	12	123
	2	13	124
	3	23	134
	4	14	234
	5	24	125
	<u>6</u>	34	135
		15	235
		25	145
		35	245
		45	<u>345</u>
		16	126
		26	136
		<u>36</u>	236
		46	146
		56	246
			346
			156
			256
			356
			456

Carline	(JIK)	
Call Lee	UN	

(日) (周) (三) (三)

Necessity: Given a simplicial complex. By application of a certain sequence of "shifting" or "compression" operations, transform it to a co-lex simplicial complex with the same *f*-vector. Then verify that the conditions must hold.

What about simplicial complexes that are the boundaries of simplicial convex polytopes?

$$f = (1, 10, 43, 102, 141, 108, 36)$$

$$f(t) = 1 + 10t + 43t^{2} + 102t^{3} + 141t^{4} + 108t^{5} + 36t^{6}$$

$$h(t) = (1 - t)^{6}f(\frac{t}{1 - t}) = 1 + 4t + 8t^{2} + 10t^{3} + 8t^{4} + 4t^{5} + t^{6}$$

$$h = (1, 4, 8, 10, 8, 4, 1) = (h_{0}, \dots, h_{6})$$

This is the *h*-vector.

$$f(t) = (1+t)^d h(\frac{t}{1+t})$$

So knowing h is equivalent to knowing f.

Theorem (Dehn-Sommerville, 1905, 1927)

For a simplicial d-polytope, $h_i = h_{d-i}$, $i = 0, \dots, \lfloor d/2 \rfloor$.

Dehn 1905: *d* = 4.

Sommerville 1927: general d.

Klee 1964: rediscovered but not formulated this way.

McMullen 1971: formulated them this way (with an index shift) and recognized the connection with shelling.

They hold also for simplicial homology spheres.

For a simplicial ball Δ , $h(\Delta)$ determines $h(\partial \Delta)$. Let $\Sigma = \Delta \cup (v \cdot \partial \Delta)$. Note that $\partial \Delta$ and Σ are spheres.

(日) (同) (三) (三)

For a simplicial ball Δ , $h(\Delta)$ determines $h(\partial \Delta)$. Let $\Sigma = \Delta \cup (v \cdot \partial \Delta)$. Note that $\partial \Delta$ and Σ are spheres.

McMullen-Walkup 1971.

(日) (周) (三) (三)

Theorem (Bruggesser-Mani, 1970)

The boundaries of convex polytopes are shellable.

Often implicitly assumed by early incomplete proofs of Euler's relation, pre-1900, pre-Poincaré.

Shellings of simplicial polytopes. Facets (maximal faces) are ordered in such a way that among the new faces contributed by each new facet there is a unique minimal new face.

ace	type	
2	5	0
3	5	1
4	5	1
4	5	2
2	6	1
3	6	2
4	6	2
4	6	3
	ace 2 3 4 2 3 4 3 4 4	acet 2 5 3 5 4 5 4 5 2 6 3 6 4 6 4 6 4 6

 h_i equals the number of facets of type i.

h = (1, 3, 3, 1).

Reversible shellings imply the Dehn-Sommerville equations.

Carl Lee (UK)

A facet of type i contributes a Boolean algebra of faces, changing f(t) by adding

$$(1+t)^{d-i}t^i = (1-t)^d(rac{t}{1-t})^i$$

McMullen 1970.

Cyclic polytope C(n, d): the convex hull of any set of *n* distinct points on the moment curve $m(t) = (t, t^2, ..., t^d)$.

Theorem (Upper Bound Theorem, McMullen, 1970) $f_j(P) \le f_j(C(n, d)), j = 0, ..., d - 1$, for all convex *d*-polytopes *P* with *n* vertices.

"Conjectured" by Motzkin in 1957.

McMullen used an *h*-vector reformulation, and shelling, observing that the Dehn-Sommerville equations are a consequence of the reversibility of shelling orders.

Proof discovered while McMullen and Shephard were writing the book *The Upper Bound Conjecture*. They did not change the title of the book.

・ロン ・四 ・ ・ ヨン ・ ヨン

Gale's Evenness Condition. $v_i = m(t_i), t_1 < \cdots < t_n$. Facets of C(8, 5):

1	2	3	4	5	6	7	8					
1	2	3	4	5								
1	2	3		5	6							
1		3	4	5	6							
1	2	3			6	7						
1		3	4		6	7						
1			4	5	6	7						
1	2	3				7	8					
1		3	4			7	8					
1			4	5		7	8					
1				5	6	7	8					
1	2	3	4				8					
1	2		4	5			8					
	2	3	4	5			8					
1	2			5	6		8					
	2	3		5	6		8					
		3	4	5	6		8					
1	2				6	7	8					
	2	3			6	7	8					
		3	4		6	7	8					
			4	5	6	7	8	-			_	

Facet hyperplane for $\{m(t_{i_1}), \ldots, m(t_{i_d})\}$.

$$(t-t_{i_1})\cdots(t-t_{i_d})=a_0+a_1t+\cdots+a_dt^d$$

yields the hyperplane

$$a_1x_1+\cdots+a_dx_d=-a_0.$$

McMullen's Conjecture

Bold conjecture made in 1971.

To define $8^{<3>}$:

$$8 = \binom{4}{3} + \binom{3}{2} + \binom{1}{1}$$

McMullen's Conjecture

Bold conjecture made in 1971.

To define $8^{<3>}$:

$$8 = \binom{4}{3} + \binom{3}{2} + \binom{1}{1}$$
$$8^{<3>} = \binom{5}{4} + \binom{4}{3} + \binom{2}{2} = 10$$

Also $0^{<0>} = 0$.

McMullen's Conjecture

The vector (h_0, h_1, \ldots, h_d) of positive integers is the *h*-vector of some simplicial *d*-dimensional convex polytope if and only if

a
$$h_0 = 1$$
,
b $h_i = h_{d-i}, i = 0, \dots \lfloor (d-1)/2 \rfloor$, and
a $g_{i+1} \leq g_i^{}, i = 1, 2, \dots, \lfloor d/2 \rfloor - 1$,
where $g_0 = 1$ and $g_i = h_i - h_{i-1}, i = 0, \dots \lfloor d/2 \rfloor$.

Example:

$$h = (1, 4, 8, 10, 8, 4, 1)$$

 $g = (1, 3, 4, 2)$

McMullen proved it for $d \le 5$ and also for $f_0 \le d + 3$ (the latter using Gale diagrams).

Order ideal of monomials: Collection of monomials over a finite set of variables, closed under divisor.

M-vector = (1, 3, 4, 2), counting number of monomials of each degree.

Theorem (Stanley, 1975)

The vector of nonnegative integers, (h_0, h_1, \ldots, h_d) , is an M-vector if and only if

1
$$h_0 = 1$$
, and

②
$$h_{i+1} ≤ h_i^{}, i = 1, 2, ..., d.$$

Stanley 1975, using a result of Macauley 1927.

3

/₽ ▶ ∢ ∋ ▶

Sufficiency: For each *i* choose the first h_i monomials of degree *i* in co-lex order.

1	3	4	2
1	<i>x</i> ₁	x_{1}^{2}	x_1^3
	<i>x</i> ₂	$x_1 x_2$	$\frac{x_1^2 x_2}{x_1^2 x_2}$
	<u>x</u> 3	x_{2}^{2}	$x_1 x_2^2$
		$x_1 x_3$	x_{2}^{3}
		$x_2 x_3$	$x_1^2 x_3$
		x_{3}^{2}	$x_1 x_2 x_3$
			$x_{2}^{2}x_{3}$
			$x_1 x_3^2$
			$x_2 x_3^2$
			x_{3}^{3}

3

(日) (同) (三) (三)

Necessity: Given an order ideal of monomials. By application of a certain sequence of "shifting" or "compression" operations, transform it to a co-lex order of monomials with the same M-vector. Then verify that the conditions must hold.

Clements-Lindström 1969: generalized the shifting technique.

Shellable Simplicial Complexes

Theorem (Stanley 1975)

The vector of nonnegative integers, $h = (h_0, h_1, ..., h_d)$, is the *h*-vector of some shellable simplicial (d - 1)-complex if and only if it is an *M*-vector.

Shellable Simplicial Complexes

Sufficiency: Not published by Stanley in 1975 that I could find, so below is the proof I came up with.

List all monomials in h_1 variables of degree at most d in co-lex order. Next to these, list all cardinality d subsets of $\{1, \ldots, h_1 + d\}$, also in co-lex order.

Select the co-lex order ideal of monomials associated with h. Select the associated subsets. These will be the facets of the desired simplicial complex, the order is a shelling order, and the type of each facet is the degree of the associated monomial.

Shellable Simplicial Complexes Example: h = (1, 3, 4, 2).

degree	1	2	3	4	5	6
*0	1	2	3			
*1	1	2		4		
*2	1		3	4		
*3		2	3	4		
*1	1	2			5	
*2	1		3		5	
*3		2	3		5	
*2	1			4	5	
3		2		4	5	
3			3	4	5	
*1	1	2				6
*2	1		3			6
3		2	3			6
2	1			4		6
3		2		4		6
3			3	4		6
2	1				5	6
3		2			5	6
3			3		5	6
3				4	5	6
	degree *0 *1 *2 *3 *1 *2 *3 *2 3 *1 *2 3 *1 *2 3 2 3 3 2 3 3 3 3 3 3 3 3	degree 1 *0 1 *1 1 *2 1 *3 - *1 1 *2 1 *3 - *2 1 3 - *1 1 *2 1 3 - 2 1 3 - 2 1 3 - 2 1 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

3

メロト メポト メヨト メヨト

Shellable Simplicial Complexes

Necessity. Let Δ be a simplicial (d-1)-complex with *n* vertices $1, \ldots, n$. Consider the polynomial ring $R = \mathbf{R}[x_1, \ldots, x_n]$. For a monomial $m = x_1^{a_1} \cdots x_n^{a_n}$ in R the support of m is $supp(m) = \{i : a_i > 0\}$. Let I be the ideal of R generated by square-free monomials m such that $supp(m) \notin \Delta$. The Stanley-Reisner ring or face ring of Δ is $A_{\Delta} := R/I$. There is a natural grading of $A = A_0 \oplus A_1 \oplus A_2 \oplus \cdots$ by degree. Informally, we do calculations as in R but set any monomial to zero whose support does not correspond to a face. Hilbert series of A_{Λ} :

$$\sum_{i=0}^{\infty} \dim A_i t^i = f(\frac{t}{1-t})$$

Shellable Simplicial Complexes

Stanley proved that if Δ is shellable, then there exist d elements $\theta_1, \ldots, \theta_d \in A_1$ (a homogeneous system of parameters) such that θ_i is not a zero-divisor in $A_{\Delta}/(\theta_1, \ldots, \theta_{i-1})$, $i = 1, \ldots, d$. (I.e., multiplication by θ_i in $A_{\Delta}/(\theta_1, \ldots, \theta_{i-1})$ is an injection.) Equivalently, A is Cohen-Macaulay.

Let
$$B = A_{\Delta}/(\theta_1, \dots, \theta_d) = B_0 \oplus B_1 \oplus \dots \oplus B_d$$
. Then
 $\sum \dim B_i t^i = (1-t)^d f(\frac{t}{1-t}) = h(t).$

So dim $B_i = h_i$, i = 0, ..., d.

Macaulay proved that there exists a basis for B as an **R**-vector space that is an order ideal of monomials. Therefore h is an M-vector.

Kind-Kleinschmidt 1979: Another proof that shellable complexes are Cohen-Macaulay. (In German—my language exam.)

Stanley 1975: Proved simplicial spheres, shellable or not, are Cohen-Macaulay, using a homological characterization of Cohen-Macaulay complexes (see also Reisner 1976), and extended the Upper Bound Theorem to them. What is the maximum value of f_j for convex *d*-polytopes with *n* vertices, one of which has degree exactly k?

Klee 1975: Derived some bounds including a construction placing a new point outside of C(n-1, d) and taking the convex hull.

Billera 1978: Suggested using approaching this problem in light of Stanley's work.

L. 1978–79: Solution, plus an idea...

Theorem (Billera-L 1981, Stanley 1980)

McMullen's conjecture is true.

Comments on the letter "g". Sufficiency: Billera-L. Necessity: Stanley.

Sufficiency. Given $h = (h_0, \ldots, h_d)$ satisfying McMullen's conditions: **1** $h_0 = 1$, 2 $h_i = h_{d-i}, i = 0, ... |(d-1)/2|, and$ **3** $g_{i+1} \leq g_i^{\langle i \rangle}, i = 1, 2, \dots, |d/2| - 1,$ where $g_0 = 1$ and $g_i = h_i - h_{i-1}$, i = 0, ..., |d/2|.

Example:

$$h = (1, 4, 6, 4, 1)$$

 $g = (1, 3, 2)$

- 4 同 6 4 日 6 4 日 6

List all monomials in g_1 variables of degree at most |d/2| in co-lex order. Next to these, list all facets of $C(f_0, d+1)$ containing v_1 and having even right-end set, also in co-lex order. $(f_0 = h_1 + d)$.

n = (1, 4, 0, 4, 1), g = (1, 5, 2)										
monomial	degree	1	2	3	4	5	6	7	8	
1	0	1	2	3	4	5				
<i>x</i> ₁	1	1	2	3		5	6			
x_{1}^{2}	2	1		3	4	5	6			
x ₂	1	1	2	3			6	7		
$x_1 x_2$	2	1		3	4		6	7		
x_{2}^{2}	2	1			4	5	6			
- X ₃	1	1	2	3				7	8	
<i>x</i> ₁ <i>x</i> ₃	2	1		3	4			7	8	
<i>x</i> ₂ <i>x</i> ₃	2	1			4	5		7	8	
x_{3}^{2}	2	1				5	6	7	8	

$$h = (1, 4, 6, 4, 1), g = (1, 3, 2)$$

Select the co-lex order ideal of monomials associated with g. Select the associated subsets. These will be the facets of a shellable simplicial complex, the order is a shelling order, and the type of each facet is the degree of the associated monomial. Example: g = (1, 3, 2).

	monomial	degree	1	2	3	4	5	6	7	8		
	1	*0	1	2	3	4	5					
	<i>x</i> ₁	*1	1	2	3		5	6				
	x_{1}^{2}	*2	1		3	4	5	6				
	<i>x</i> ₂	*1	1	2	3			6	7			
	$x_1 x_2$	*2	1		3	4		6	7			
	x_{2}^{2}	2	1			4	5	6				
	<i>X</i> 3	*1	1	2	3				7	8		
	<i>x</i> ₁ <i>x</i> ₃	2	1		3	4			7	8		
	<i>x</i> ₂ <i>x</i> ₃	2	1			4	5		7	8		
	x_{2}^{2}	2	1				<u>5</u>	6	⊳7∢	≡8 ∢≣≻	æ	9
rl Lee	(UK)		g-Theor							February 2018		33 /

The resulting simplicial complex, Δ , a "patch" on the boundary of $C(f_0, d+1)$, is a simplicial *d*-ball with *h*-vector equal to *g* padded with a final string of 0's.

Use the "boundary calculation" to determine the *h*-vector of its boundary, $\partial \Delta$.

The resulting simplicial complex, Δ , a "patch" on the boundary of $C(f_0, d+1)$, is a simplicial *d*-ball with *h*-vector equal to *g* padded with a final string of 0's.

Use the "boundary calculation" to determine the *h*-vector of its boundary, $\partial \Delta$.

Using indeterminate t_i for the points on the moment curve and the cyclic polytope facet equations, carefully select a new point z outside of $C(f_0, d + 1)$ and determine inequalities that must hold for Δ to be precisely visible from z. Then show that one can choose specific values of t_i . This part of the proof explicitly references the order ideal of monomials and facet selection. (This is the hardest part of the proof.)

Take the convex hull Q of $C(f_0, d+1)$ and z, and let P be a vertex-figure of z—the intersection of Q and a hyperplane separating z from the other vertices. Then $h(P) = h(\partial \Delta)$.

(日) (周) (三) (三)

Necessity.

Recall the ring $B = B_0 \oplus B_1 \oplus \cdots \oplus B_d$ with Hilbert series

$$h_0+h_1t+\cdots+h_dt^d.$$

The Hard Lefschetz Theorem implies there is an element $\omega \in B_1$ such that multiplication by ω^{d-2i} is a bijection from B_i to B_{d-i} , $i = 0, \ldots, \lfloor d/2 \rfloor$, and so ω is not a zero divisor in $B_0 \oplus B_1 \oplus \cdots \oplus B_{\lfloor d/2 \rfloor - 1}$. Thus the Hilbert series for $B/(\omega) = C_0 \oplus C_1 \oplus \cdots \oplus C_{\lfloor d/2 \rfloor}$ is

$$g_0 + g_1 t + \cdots g_{\lfloor d/2 \rfloor} t^{\lfloor d/2 \rfloor}$$

(Multiply first half of $h_0 + h_1t + \cdots + h_dt^d$ by (1 - t).) By Macaulay there is a basis for C that is an order ideal of monomials. Therefore g is an M-vector.

McMullen 1993 and 1996: New proof of necessity using weights and his polytope algebra.

Some Reflections

Carl Lee (UK)

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・