Comments on the Euclidean Algorithm

I want to clarify and correct some comments I made about the Euclidean Algorithm and its extension to polynomials.

The Euclidean Algorithm for integers relies upon the following Division Algorithm for Integers: Given any nonnegative integer a and positive integer b, there exist unique nonnegative integers q and r so that $a=q b+r$ and $r<b$.

The Euclidean Algorithm for positive integers a_{1}, a_{2} proceeds by dividing a_{1} by a_{2} yielding remainder a_{3}, then dividing a_{2} by a_{3} yielding remainder a_{4}, etc., until a remainder $a_{n}=0$ is reached. Then a_{n-1} is the greatest common factor of a_{1} and a_{2}.

Extending this idea to polynomials $\mathbf{R}[x]$ with real coefficients relies upon the following Division Algorithm for Polynomials: Given any polynomial $a(x)$ and nonzero polynomial $b(x)$, there exist unique polynomials $q(x)$ and $r(x)$ so that $a(x)=q(x) b(x)+r(x)$ and the degree of $r(x)$ is strictly less than the degree of $b(x)$.

The Euclidean Algorithm for nonzero polynomials a_{1}, a_{2} proceeds by dividing a_{1} by a_{2} yielding remainder a_{3}, then dividing a_{2} by a_{3} yielding remainder a_{4}, etc., until a remainder $a_{n}=0$ is reached. Then a_{n-1} is the greatest common factor of a_{1} and a_{2}. It is unique up to multiplication by a real number.

For example, if you wish to find the greatest common factor of $x^{2}-2 x+1$ and $x^{2}-1$, divide $a_{1}=x^{2}-2 x+1$ by $a_{2}=x^{2}-1$ to get quotient 1 and remainder $a_{3}=-2 x+2$. Then divide a_{2} by a_{3} to get quotient $-\frac{1}{2} x-\frac{1}{2}$ and remainder $a_{4}=0$. Thus the greatest common factor (greatest in terms of degree) of a_{1} and a_{2} is $a_{3}=-2 x+2$ (or we can multiply by the real number $-\frac{1}{2}$ to get $x-1$). In this way we can find the greatest common factor without first factoring!

