Comments on the Euclidean Algorithm

I want to clarify and correct some comments I made about the Euclidean Algorithm and its extension to polynomials.

The Euclidean Algorithm for integers relies upon the following *Division Algorithm for Integers*: Given any nonnegative integer a and positive integer b, there exist unique nonnegative integers q and r so that a = qb + r and r < b.

The Euclidean Algorithm for positive integers a_1, a_2 proceeds by dividing a_1 by a_2 yielding remainder a_3 , then dividing a_2 by a_3 yielding remainder a_4 , etc., until a remainder $a_n = 0$ is reached. Then a_{n-1} is the greatest common factor of a_1 and a_2 .

Extending this idea to polynomials $\mathbf{R}[x]$ with real coefficients relies upon the following *Division Algorithm for Polynomials*: Given any polynomial a(x) and nonzero polynomial b(x), there exist unique polynomials q(x) and r(x) so that a(x) = q(x)b(x) + r(x) and the degree of r(x) is strictly less than the degree of b(x).

The Euclidean Algorithm for nonzero polynomials a_1, a_2 proceeds by dividing a_1 by a_2 yielding remainder a_3 , then dividing a_2 by a_3 yielding remainder a_4 , etc., until a remainder $a_n = 0$ is reached. Then a_{n-1} is the greatest common factor of a_1 and a_2 . It is unique up to multiplication by a real number.

For example, if you wish to find the greatest common factor of $x^2 - 2x + 1$ and $x^2 - 1$, divide $a_1 = x^2 - 2x + 1$ by $a_2 = x^2 - 1$ to get quotient 1 and remainder $a_3 = -2x + 2$. Then divide a_2 by a_3 to get quotient $-\frac{1}{2}x - \frac{1}{2}$ and remainder $a_4 = 0$. Thus the greatest common factor (greatest in terms of degree) of a_1 and a_2 is $a_3 = -2x + 2$ (or we can multiply by the real number $-\frac{1}{2}$ to get x - 1). In this way we can find the greatest common factor without first factoring!