MA111 - Homework \#10 Short Solutions

64. $p=\frac{0.08}{12}=0.00667 . T=30(12)=360 . L=10(1+.00667)=10.0667$.

$$
\begin{aligned}
F & =L\left[\frac{(1+p)^{T}-1}{p}\right] \\
& =10.0667\left[\frac{(1+0.00667)^{360}-1}{0.00667}\right] \\
& =\$ 15002.95 .
\end{aligned}
$$

66. Same as problem 64 except that now $L=10$ since the last payment earns no interest. $\$ 14903.59$.
67. $\$ 12241.75$.
68. $p=\frac{0.06}{12}=0.005 . T=35(12)=420 . L=P$ since the last month's payment is at the end of the month and earns no interest.

$$
\begin{aligned}
F & =L\left[\frac{(1+p)^{T}-1}{p}\right] \\
1,000,000 & =P\left[\frac{(1+0.005) 420}{40.1}\right] \\
1,000,000 & =P(1424.71) .
\end{aligned}
$$

So $P=\$ 701.90$.
72. Here money is just sitting and growing, so $F=P(1+r)^{t} .1172 .59=P(1+0.07)^{15}=$ 2.759. So $P=\$ 425.00$.
74. (a) $F=16 . p=\frac{0.06}{12}=0.005 . q=\frac{1}{1+p}=\frac{1}{1.005}$. $T=60$.

$$
\begin{aligned}
P & =F q\left[\frac{q^{T}-1}{q-1}\right] \\
& =16\left(\frac{1}{1.005}\right)\left[\frac{\left(\frac{1}{1.005}\right)^{60}-1}{1.005}-1\right. \\
& =\$ 827.61 .
\end{aligned}
$$

(b) $\$ 868.79$.
76. $P=16,000,000,000 . p=\frac{0.03}{1}=0.03 . q=\frac{1}{1+p}=\frac{1}{1.03} . T=40$.

$$
\begin{aligned}
P & =F q\left[\frac{q^{T}-1}{q-1}\right] \\
16,000,000,000 & =F\left(\frac{1}{1.03}\right)\left[\frac{\left(\frac{1}{1.03}\right)^{40}-1}{1.03}-1\right. \\
16,000,000,000 & =F(23.11) .
\end{aligned}
$$

So $F=\$ 692,198,046$ annual payment.
78. (a) $P=95,000 . p=\frac{0.0525}{12}=0.004375 . q=\frac{1}{1+p}=\frac{1}{1.004375} . T=15(12)=180$.

$$
\left.\begin{array}{rl}
P & =F q\left[\frac{q^{T}-1}{q-1}\right] \\
95,000 & =F\left(\frac{1}{1.004375}\right)\left[\frac{\left(\frac{1}{1.004375}\right)^{180}-1}{1 . .004375}-1\right.
\end{array}\right]
$$

So $F=\$ 763.68$ is the new payment, and they save $1104-763.68=\$ 340.32$ each month.
(b) Over the life time of the loan they pay $763.68 \times 180=\$ 137,462$. . So the interest paid over the life of time of the loan is $137,462-95,000=\$ 42,462$.
80. $F=877 . p=\frac{0.0575}{12}=0.004792 . q=\frac{1}{1+p}=\frac{1}{1.004792}$. $T=30(12)=360$.

$$
\begin{aligned}
P & =F q\left[\frac{q^{T}-1}{q-1}\right] \\
& =877\left(\frac{1}{1.004792}\right)\left[\frac{\left(\frac{1}{1.004792}\right)^{360}-1}{1.004792}-1\right. \\
& =150,275 .
\end{aligned}
$$

Adding on the down payment of $\$ 35,000$, the total cost of the home was $\$ 185,275$.

