MA111 - Homework \#7 Short Solutions

1. Page 168
2. (a) 5.2%
(b) 4.7%
(c) 9%
(d) 4.825%
(e) 19%
(f) 8.74%
(g) 35.6%
(h) 3.89%
3. (a) 12%
(b) 2814
(c) 31.25
(d) 80
(e) 666.67%
(f) 6000
(g) 95357.44
(h) 8.33%
(i) 2
4. 360
5. 19, 469,475
6. (a) 159.7%
(b) 62.6%
(c) 59.7%
7. 20%
8. 500
9. $\$ 3.51$
10. Case Study 2.1
11. Massery: $\$ 6$ per thousand and $\$ 3.77$ per thousand.

Pierce: $\$ 1$ per $\$ 6$ and $\$ 1$ per $\$ 3.7$.
Stilley does not state the rates.
Basinger: $\$ 166.67$ per $\$ 1000$ and $\$ 265$ per $\$ 1000$.
McGuire re-computes the taxes and states the rates of his computed taxes ($\$ 3,754$ on $\$ 30,000$ and $\$ 56,748$ on $\$ 200,000$) as $\$ 125$ per $\$ 1,000$ and $\$ 284$ per \$1,000.
Herrington: $\$ 166.67$ per $\$ 1,000$ and $\$ 265$ per $\$ 1,000$. Herrington: 16.7 percent and 26.5 percent.
VanHook: 16.67 percent and 26.5 percent. VanHook restates Massery's $\$ 6$ per $\$ 1,000$ as .06 percent.
2 and 4 . We will compute the tax rates:
$\$ 5000$ in taxes on $\$ 30,000$ income:

$$
\frac{5000}{30000} \approx 0.16667 \approx 16.7 \%
$$

$\$ 53,000$ in taxes on $\$ 200,000$ income:

$$
\frac{53000}{200000}=0.265=26.5 \%
$$

So Herrington and VanHook are correct in stating the percentages.
Now convert these tax rates to an amount per thousand dollars:
$\$ 5000$ in taxes on $\$ 30,000$ income:

$$
\begin{aligned}
0.1667 & =\frac{x}{1000} \\
0.1667 \cdot 1000 & =166.67=x .
\end{aligned}
$$

So this tax rate is equivalent to $\$ 166.67$ per $\$ 1000$.
$\$ 53,000$ in taxes on $\$ 200,000$ income:

$$
\begin{aligned}
0.265 & =\frac{x}{1000} \\
265 & =x .
\end{aligned}
$$

So this tax rate is equivalent to $\$ 265$ per $\$ 1000$.

Massery is incorrect. Basinger and Herrington are correct.
To see that Pierce is correct, we compute:
For $\$ 5000$ in taxes on $\$ 30,000$ income:

$$
\begin{aligned}
\frac{5000}{30000} & =\frac{1}{x} \\
5000 \cdot x & =30000 \\
x & =6 .
\end{aligned}
$$

For $\$ 53,000$ in taxes on $\$ 200,000$ income:

$$
\begin{aligned}
\frac{53000}{200000} & =\frac{1}{x} \\
53000 \cdot x & =200000 \\
x & =3.77 .
\end{aligned}
$$

VanHook restates Massery's $\$ 6$ per $\$ 1,000$ as 0.06 percent, and then says that at 0.06%, he should have paid $\$ 150$ on $\$ 30,000$ income.
Let's check:

$$
\begin{aligned}
\frac{6}{1000} & =\frac{P}{100} \\
6 \cdot 100 & =P \cdot 1000 \\
0.6 & =P
\end{aligned}
$$

The actual rate would be 0.6%.
At this rate, what amount would be paid on $\$ 30,000$?

$$
\$ 30000 \cdot \frac{0.6}{100}=\$ 180
$$

3. As Pierce points out, it is likely that Massery's "numerators and denominators

4. Case Study 2
5. From the article: ". . $\$ 1$ billion per month. ... it's only about half of 1 percent of the federal budget." This implies that $\$ 12$ billion per year is 0.5% of the federal budget. Let F be the amount of the federal budget. Then

$$
\frac{0.5}{100}=\frac{\$ 12 \text { billion }}{F}
$$

So $F=\frac{100 \times \$ 12 \text { billion }}{0.5}=\$ 2400$ billion, which is $\$ 2.4$ trillion.
4. From the article: "...create 170,000 jobs next year. That would add... 0.13 percent to employment in this country. Let E be the number of people employed.

$$
\frac{0.13}{100}=\frac{170000}{E}
$$

so $E=\frac{100 \times 170000}{0.13}=130,769,230$ or about 131 million.
4. Salary decrease and increase.

You are making $\$ 12$ an hour. Due to the recession, your boss cuts your pay by 10%. One year later things are picking up, and your boss says he is now going to increase your salary by 10%. Will you be making $\$ 12$ an hour again?

Answer: When your pay is cut by 10%, your new pay is $\$ 12\left(1-\frac{10}{100}\right)$ or $\$ 10.80$ per hour. When your pay is then increased by 10%, your new pay is $\$ 10.80\left(1+\frac{10}{100}\right)$ or $\$ 11.88$ per hour, which is not back to $\$ 12$ per hour.

