MA111 - Homework \#9 Short Solutions

22. (a) $1250(1+.051(3))=\$ 1441.25$.
(b) $\$ 1632.50$.
(c) $\$ 2015.00$.
23. $\$ 3442.80$.
24. $7620=6000(1+6 r)$. Solve for $r: r=0.045$, so $R=4.5 \%$.
25. For convenience, let's triple $\$ 1$ to $\$ 3.3=1(1+20 r)$. Solve for $r: r=0.1$, so $R=10 \%$.
26. (a) $1237.50(1+0.0825)^{3}=\$ 1569.74$.
(b) No additional growth occurs in the final half year, so just calculate with 4 years. $\$ 1699.25$.
27. In the first 4 years the money grows to $\$ 3082.41$. In the next 3 years this new value grows to $\$ 3542.85$.
28. In the first 3 years the money grows to $\$ 2925.18$. Remove $\$ 850$, leaving $\$ 2075.18$. In the next 5 years this new value grows to $\$ 2696.15$.
29. (a) $874.83\left(1+\frac{0.0775}{365}\right)^{365(2)}=\$ 1021.49$.
(b) To find the APY, just find out the percent growth of $\$ 1$ in one year. $\$ 1$ grows to $1\left(1+\frac{0.0775}{365}\right)^{365}=\$ 1.080573$. So the percent growth in one year is $\frac{1.080573-1}{1} \times 100=$ 8.0573\%.
30. (a) Remember that there are $365 \times 24 \times 60=525600$ minutes in a year. $\$ 1451.68$.
(b) Check how $\$ 1$ grows in one year and calculate the percent growth. 6.9830%.
31. Check how $\$ 1$ would grow in one year. In the first case it would grow to $\$ 1.09$, which is a growth rate of 9%. In the second case it would grow to $\$ 1.091096$, which is a growth rate of 9.1096%. In the third case (this formula is on page 375) it would grow to $F=P e^{r t}=1 e^{0.0875}=\$ 1.089806$, which is a growth rate of 8.9806%.
32. (a) We want $1080 \leq 540(1+.0675)^{t}$, so $2 \leq(1.0675)^{t}$. Find t by guess and check to see $t=11$.
(b) We want $2 P \leq P(1+.0675)^{t}$, so $2 \leq(1.0675)^{t}$. So we get the same value of t.
33. $732.05=P(1+.10)^{3}$. Solve for $P: P=\$ 550$.
34. (a) $G_{1}=c P=800$.
(b) $G_{5}=c^{5} P=327.68$.
(c) $G_{N}=(0.8)^{N}(1000)$.
35. (a) $c=\frac{G_{1}}{G_{0}}=1.5$.
(b) $G_{5}=c^{5} P=60.75$.
(c) $G_{N}=(1.5)^{N}(8)$.
36. (a) $c=\frac{G_{1}}{G_{0}}=4$. $G_{20}=c^{20} P=4^{20}(2.5)=2.75 \times 10^{12}$.
(b) $G_{N}=4^{N}(2.5)$.
(c) $2.5+(4)(2.5)+(4)^{2}(2.5)+\cdots+(4)^{20}(2.5)=2.5 \frac{5^{21}-1}{4-1}=3.67 \times 10^{12}$.
37.

$$
\begin{aligned}
& 500(1.075)+500(1.075)^{2}+500(1.075)^{3}+\cdots+500(1.075)^{60} \\
= & 500(1.075)\left[1+1.075+(1.075)^{2}+\cdots+(1.075)^{59}\right] \\
= & 500(1.075) \cdot 1\left(\frac{(1.075)}{1.075-1}\right) \\
= & \$ 542,152.89 .
\end{aligned}
$$

To evaluate the expression in the above square brackets, we used $P=1$ and $c=1.075$.
62.

$$
\left.\begin{array}{rl}
& \frac{500}{1.075}+\frac{500}{(1.075)^{2}}+\frac{500}{(1.075)^{3}}+\cdots+\frac{500}{(1.0755)^{60}} \\
= & \frac{500}{1.075}\left[1+\frac{1}{(1.075}+\frac{1}{(1.075)^{2}}+\cdots+\frac{1}{(1.075)^{59}}\right] \\
= & \frac{500}{1.075} \cdot 1\left(\frac{\left(\frac{1}{1.075}\right)^{60}-1}{1 . .075}-1\right.
\end{array}\right) .
$$

To evaluate the expression in the above square brackets, we used $P=1$ and $c=\frac{1}{1.075}$.

