Rational Numbers Worksheet

Name:

MA 201

- 1. Which of the following are true?
 - (a) The rational numbers are commutative under addition.
 - (b) The rational numbers are commutative under subtraction.
 - (c) The rational numbers are commutative under multiplication.
 - (d) The rational numbers are commutative under division.
 - (e) The rational numbers are associative under addition.
 - (f) The rational numbers are associative under subtraction.
 - (g) The rational numbers are associative under multiplication.
 - (h) The rational numbers are associative under division.
 - (i) The rational numbers are closed under addition.
 - (j) The rational numbers are closed under subtraction.
 - (k) The rational numbers are closed under multiplication.
 - (l) The rational numbers are closed under division.
 - (m) Every rational number has an additive inverse.
 - (n) Every rational number has an multiplicative inverse.
 - (o) Every rational number has a unique additive inverse.
 - (p) Every nonzero rational number has a unique multiplicative inverse.
 - (q) One is the multiplicative identity for the set of rational numbers.
 - (r) Zero is the additive identity for the set of rational numbers.
 - (s) If $\frac{a}{b}$ and $\frac{c}{d}$ are distinct rational numbers with $\frac{a}{b} < \frac{c}{d}$, then there is a rational number $\frac{e}{f}$ such that $\frac{a}{b} < \frac{e}{f} < \frac{c}{d}$.
 - (t) (problem 21 from section 6.1) There are infinitely many rational numbers between 0 and 1.
 - (u) (problem 21 from section 6.1) There are infinitely many ways to replace two fractions with two equivalent fractions that have a common denominator.
 - (v) (problem 21 from section 6.1) There is a unique least common denominator for a given pair of fractions.
 - (w) (problem 21 from section 6.1) There is a least common fraction.
- 2. Find the additive inverse.
 - (a) $\frac{3}{5}$

- (b) $2\frac{1}{3}$
- (c) $-\frac{3}{5}$
- (d) 0

3. Find the multiplicative inverse, if possible.

- (a) $\frac{3}{5}$ (b) $2\frac{1}{3}$ (c) $-\frac{3}{5}$
- (d) 0
- 4. Find a rational number that is between the two rational numbers you are given.
 - (a) 0; 1
 - (b) $\frac{2}{3}; \frac{4}{5}$
 - (c) $2\frac{1}{3}; \frac{5}{7}$
 - (d) $2\frac{1}{3}; 3\frac{5}{7}$
- 5. Explain why we define $a^0 = 1$ and $a^{-n} = \frac{1}{a^n}$ when $a \neq 0$ and n is a positive integer. (See the discussion on pages 415–416.)
- 6. Write each decimals in expanded form.
 - (a) 456.6787
 - (b) 0.7856
 - (c) 123.6712143
- 7. Quickly multiply.
 - (a) $10,123.67 \times 100$
 - (b) $10,123.67 \times 1000$
 - (c) $10,123.67 \times 10000$
 - (d) $10,123.67 \times 10$
 - (e) $10,123.67 \times 10^6$
 - (f) $10,123.67 \times 10^7$
 - (g) $10,123.67 \times 10^2$
 - (h) 10,123.67 $\times \, 10^3$
 - (i) $10,123.67 \times 10^{12}$
 - (j) 10,123.67 $\times \frac{1}{100}$
 - (k) 10,123.67 $\times \frac{1}{10}$
 - (l) 10, 123.67 × $\frac{1}{10000}$

- (m) $10,123.67 \times 10^{-6}$
- (n) $10,123.67 \times 10^{-10}$
- (o) $10,123.67 \times 10^{-2}$
- (p) $10,123.67 \times 10^{-1}$

8. Quickly multiply.

- (a) $10, 123.67 \div 100$
- (b) $10, 123.67 \div 1000$
- (c) $10, 123.67 \div 10000$
- (d) $10, 123.67 \div 10$
- (e) $10,123.67 \div 10^6$
- (f) $10,123.67 \div 10^7$
- (g) $10,123.67 \div 10^2$
- (h) $10,123.67 \div 10^3$
- (i) $10,123.67 \div 10^{12}$
- (j) 10, 123.67 $\div \frac{1}{100}$
- (k) 10, 123.67 $\div \frac{1}{10}$
- (l) 10, 123.67 $\div \frac{1}{10000}$
- (m) $10,123.67 \div 10^{-6}$
- (n) $10,123.67 \div 10^{-10}$
- (o) 10, 123.67 \div 10⁻²
- (p) 10, 123.67 $\div 10^{-1}$