Real Numbers Worksheet I

Name:

 $\mathrm{MA}\ 201$

- 1. Convert the following fractions to decimals. Note that the prime power representations of each denominator contain only 2's and/or 5's.
 - (a) $\frac{7}{40}$
 - (b) $\frac{11}{8}$
 - (c) $\frac{23}{25}$
- 2. Classify each decimal according to the following categories
 - terminating decimal or nonterminating decimals
 - repeating decimal or non-repeating decimal
 - (a) 123.123
 - (b) 45.4545
 - (c) 0.10100100010001...
 - (d) 0.10101010...
 - (e) 0.9999...
 - (f) $5.\overline{67}$
 - (g) 67.1243636
- 3. Convert the following decimals to fractions, if possible.
 - (a) 123.123
 - (b) 45.4545
 - (c) 0.10100100010001...
 - (d) 0.10101010...
 - (e) 0.9999...
 - (f) $5.\overline{67}$
 - (g) $5.\overline{675}$
 - (h) $5.\overline{67234}$
 - (i) 67.1243636

- 4. Objective number 48 should say: Know that every terminating decimal is a rational number, that is, every terminating decimal can be expressed as a fraction. You need to remove the word "repeating"
- 5. Know that every nonterminating, repeating decimal is a rational number, that is, every nonterminating, repeating decimal can be expressed as a fraction.
- 6. Know that every nonterminating, non-repeating decimal is a NOT rational number, that is, every nonterminating, non-repeating decimal CANNOT be expressed as a fraction.
- 7. Show that $\sqrt{2}$ is irrational.
- 8. Show that $3\sqrt{2}$ is irrational.
- 9. Show that $5 + \sqrt{2}$ is irrational.
- 10. Know that there are infinitely many irrational numbers.
- 11. Know that every position on the number line represents a real number and every real number is represented by a position on the number line.
- 12. Know that there are positions on the number line which do not represent rational numbers.