Music

Tuning a Piano

A geometric sequence is a sequence of the form $a, a r, a r^{2}, a r^{3}, \ldots$. That is to say, the first term is some number a, and thereafter each term is obtained from the previous one by multiplying by a specific number r. For example, $15,45,135,405, \ldots$ is a geometric sequence.

The 88 keys of a piano are tuned according to a geometric sequence. The note A (designated A4) above middle C (designated C4) has frequency 440 Hz . The C note (C5) above middle C has twice the frequency of middle C. There are 13 notes between C 4 and C 5 , inclusive. Determine the frequencies of these 13 notes, explaining your reasoning. Round your answers to two decimal places.

1. $\mathrm{C}(\mathrm{C} 4)$
2. $\mathrm{C} \sharp$
3. D
4. $\mathrm{D} \sharp$
5. E
6. F
7. $\mathrm{F} \sharp$
8. G
9. $G \sharp$
10. A 440 Hz
11. $\mathrm{A} \sharp$
12. B
13. C (C5)

To the human ear, two notes played together tend to sound more harmonious if the ratios of their frequencies is a ratio of two small integers. For each of the fractions below, find a note above C 4 so that the ration of the frequency of this note to the frequency of C 4 is approximately equal to that fraction:

1. $2 / 1$
2. $3 / 2$
3. $4 / 3$
4. $5 / 4$
5. $5 / 3$
6. $6 / 5$

Here is a website with a virtual keyboard to test notes and chords: www.bgfl.org/bgfl/custom/resources_ftp/client_ftp/ks2/music/piano/index.htm.

