Example of Guessing a Formula

Suppose you want to guess the formula for

$$
f(n)=1^{2}+2^{2}+3^{2}+\cdots+n^{2}, n \geq 0
$$

(We take $f(0)=0$.) You can begin by making a table of values and looking at differences.

n	0	1		2		3		4	5	
$f(n)$	0		1		5		14		30	
		1		4		9		16		25
			3		5		7		9	
				2		2		2		
					0		0			

The fact the the fourth row of differences appears to be zeros strongly suggests that the formula is given by a cubic polynomial. This means we will need to use four values to determine the function.

First Method. Design a polynomial that will match,say, the first four values. Start with
$f(n)=c_{0}(n-1)(n-2)(n-3)+c_{1} n(n-2)(n-3)+c_{2} n(n-1)(n-3)+c_{3} n(n-1)(n-2)$.
One by one, substitute values $0,1,2$, and 3 for n and solve for $c_{0}, c_{1}, c_{2}, c_{3}$.

$$
\begin{gathered}
f(0)=0=c_{0} \cdot(-6), \text { so } c_{0}=0 . \\
f(1)=1=c_{1} \cdot 2, \text { so } c_{1}=1 / 2 . \\
f(2)=5=c_{2} \cdot(-2), \text { so } c_{2}=-5 / 2 . \\
f(3)=14=c_{3} \cdot 6, \text { so } c_{3}=14 / 6=7 / 3 .
\end{gathered}
$$

Using these values of the c_{i} we have our proposed formula

$$
f(n)=0(n-1)(n-2)(n-3)+\frac{1}{2} n(n-2)(n-3)-\frac{5}{2} n(n-1)(n-3)+\frac{7}{3} n(n-1)(n-2)
$$

which we can simplify to

$$
f(n)=\frac{1}{6} n\left(2 n^{2}+3 n+1\right) .
$$

At this point it would be wise to check that this formula works for $n=4$ and $n=5$, and indeed it does. Now we may proceed to prove this formula by induction on n.

Second Method. Guessing that the formula is a cubic polynomial, we may write $f(n)=a n^{3}+b n^{2}+c n+d$, substitute in four values for n, and solve a system of equations for a, b, c, d.

$$
\begin{array}{ll}
f(0): & d=0 \\
f(1): & a+b+c+d=1 \\
f(2): & 8 a+4 b+2 c+d=5 \\
f(3): & 27 a+9 b+3 c+d=14
\end{array}
$$

I'll leave the details to you, but you should compute that $a=1 / 3, b=1 / 2, c=1 / 6$, and $d=0$. Again check that this formula works for $n=4$ and $n=5$, and then prove it by induction.

