MA 310 - Homework \#6

Due Monday, March 2, in class

1. Solve "Binomial Coefficients" in the file "Problems" by doing the following: For nonnegative integer n consider the expansion of

$$
(x+y)^{n}=c_{n, 0} x^{n} y^{0}+c_{n, 1} x^{n-1} y^{1}+c_{n, 2} x^{n-2} y^{2}+\cdots+c_{n, n} x^{0} y^{n} .
$$

We are going to figure out formulas for these coefficients.
(a) Think carefully about the fact that $(x+y)(x+y)^{n-1}=(x+y)^{n}$. Then prove (without induction) that

$$
c_{n, 0}=c_{n, n}=1, \text { for all } n \geq 0
$$

and

$$
c_{n-1, k-1}+c_{n-1, k}=c_{n, k} \text { for all } n \geq 1,1 \leq k \leq n-1
$$

Solution. The expansion of $(x+y)^{n}=(x+y) \cdots(x+y)$ includes the terms x^{n} and y^{n}. Thus $c_{n, 0}=c_{n, n}=1$.
Now consider $(x+y)^{n}=(x+y)(x+y)^{n-1}$. Assume $1 \leq k \leq n-1$. One of the terms on the left-hand side is $c_{n, k} x^{n-k} y^{k}$. This must come from multiplying (on the righthand side) x by $c_{n-1, k} x^{n-k-1} y^{k}$ and from multiplying y by $c_{n-1, k-1} x^{n-k} y^{k-1}$. The result on the right-hand side is $\left(c_{n-1, k-1}+c_{n-1, k} x^{n-k} y^{k}\right.$. Thus $c_{n-1, k-1}+c_{n-1, k}=$ $c_{n, k}$.
(b) Now prove by induction on $n \geq 0$ that

$$
c_{n, k}=\frac{n!}{k!(n-k)!}, n \geq 0,0 \leq k \leq n .
$$

Solution. Base case. If $n=0$ then $(x+y)^{0}=1 x^{0} y^{0}$ so $c_{0,0}=1$. Verifying the formula, $\frac{0!}{0!0!}=\frac{1}{1}=1$ also. We can check in general that the formula yields 1 for $c_{n, 0}$ and for $c_{n, n}$ for all n, since $\frac{n!}{0!n!}=\frac{n!}{n!0!}=1$.
For the inductive step, assume the formula is true for $n=r-1, r \geq 1$, for all k, $0 \leq k \leq r-1$. Then the formula is also true for $n=r$, and for all $1 \leq k \leq r-1$,
since

$$
\begin{aligned}
c_{r, k} & =c_{r-1, k-1}+c_{r-1, k} \\
& =\frac{(r-1)!}{(k-1)!(r-k)!}+\frac{(r-1)!}{k!(r-1-k)!} \\
& =\frac{(r-1)!}{(k-1)!(r-k)!} \frac{k}{k}+\frac{(r-1)!}{k!(r-1-k)!} \frac{r-k}{r-k} \\
& =\frac{k(r-1)!}{k!(r-k)!}+\frac{(r-k)(r-1)!}{k!(r-k)!} \\
& =\frac{(k+r-k)(r-1)!}{k!(r-k)!} \\
& =\frac{r!}{k!(r-k)!} .
\end{aligned}
$$

This concludes the inductive step.
Therefore the formula is true for all n by induction.
2. Solve "Choosing and Permuting" in the file "Problems."

Solution. You have n choices for the first book on the shelf, $n-1$ choices for the second, $n-2$ for the third, etc., for a total of k terms. Thus the formula is $n(n-$ 1) $(n-2) \cdots(n-k+1)$. This can be rewritten as

$$
n(n-1)(n-2) \cdots(n-k+1)=n(n-1)(n-2) \cdots(n-k+1) \frac{(n-k)!}{(n-k)!}=\frac{n!}{(n-k)!}
$$

3. Using the solution to the previous problem, solve "Choosing" in the file "Problems."

Solution. Think about first choosing k books to line up on a shelf, and then removing the books and placing them in the backpack. For each selection of k particular books, these can be permuted in k ! ways, and each of these different orderings result in the same collection of books in the backpack. So you must divide the answer to the previous problem by k !, giving the answer

$$
\frac{n!}{k!(n-k)!} .
$$

4. Read Section 3.1 on Symmetry in the text, and especially study Example 3.1.5. Now solve Problem 3.1.13. Include a neat and accurate sketch.

Solution.

Let $A=(3,5)$ and $B=(8,2)$. We are looking for a shortest path of the form $A C D B$ in the figure. Consider such a path and reflect A across the y-axis to get $A^{\prime}=(-3,5)$ and B across the x-axis to get $B^{\prime}=(8,-2)$. Then $A C=A^{\prime} C$ and $B D=B^{\prime} D$. So the length of the path $A C D B$ also equals the length of the path $A^{\prime} C D B^{\prime}$. To make this latter path as short as possible, we need position C and D so that $A^{\prime} C D B^{\prime}$ is a straight line segment (indicated by the red line segment in the figure). Thus the shortest path has length equal to the distance $A^{\prime} B^{\prime}$, which equals

$$
\sqrt{(8+3)^{2}+(-2-5)^{2}}=\sqrt{170}
$$

5. A triangle is inscribed in a given circle. Prove that if the triangle is not equilateral, then there is another triangle with larger area that can be inscribed in the same circle.

Solution.

Let $\triangle A B C$ be such a triangle. Since the triangle is not equilateral, there must exist two sides, say, $\overline{A B}$ and $\overline{A C}$, that are not equal in length. Then the point A will not lie on the perpendicular bisector of $\overline{B C}$, but moving the point A along the circle to this position A^{\prime} will result in a triangle with the same base $\overline{B C}$ but strictly greater altitude, hence larger area.

