Homework \#7 Solutions

Let $f(n)=1^{3}+2^{3}+3^{3}+\cdots+n^{3}$. We can make a table of values and calculate differences.

n	0	1		2		3		4		5		6
$f(n)$	0		1		9		36		100		225	
		1		8		27		64		125		216
		7		19		37		61		91		
			12		18		24		30			
				6		6		6				
					0		0					

Since the fifth row of differences seems to be zeros, we try to find a polynomial of degree 4, and use the first five values of $f(n)$.

We try

$$
\begin{aligned}
f(n)= & c_{0}(n-1)(n-2)(n-3)(n-4)+c_{1} n(n-2)(n-3)(n-4)+c_{2} n(n-1)(n-3)(n-4) \\
& +c_{3} n(n-1)(n-2)(n-4)+c_{4} n(n-1)(n-2)(n-3)
\end{aligned}
$$

Substituting in $n=0,1,2,3,4$ gives us

$$
\begin{aligned}
0 & =c_{0}(-1)(-2)(-3)(-4) \text { so } c_{0}=0 \\
1 & =c_{1}(1)(-1)(-2)(-3) \text { so } c_{1}=-1 / 6 \\
9 & =c_{2}(2)(1)(-1)(-2) \text { so } c_{2}=9 / 4 \\
36 & =c_{3}(3)(2)(1)(-1) \text { so } c_{3}=-36 / 6=-6 \\
100 & =c_{4}(4)(3)(2)(1) \text { so } c_{4}=100 / 24=25 / 6
\end{aligned}
$$

Thus

$$
\begin{aligned}
f(n)= & -(1 / 6) n(n-2)(n-3)(n-4)+(9 / 4) n(n-1)(n-3)(n-4) \\
& -6 n(n-1)(n-2)(n-4)+(25 / 6)(n)(n-1)(n-2)(n-3) .
\end{aligned}
$$

Simplify with algebra to get

$$
f(n)=(1 / 4) n^{4}+(1 / 2) n^{3}+(1 / 4) n^{2} .
$$

Now to prove this by induction on $n \geq 1$.
For $n=1$ the formula gives $(1 / 4)+(1 / 2)+(1 / 4)=1$, which is correct.
Now assume that the formula is true for $n=k-1, k \geq 1$, and prove it is true for $n=k$.

$$
\begin{aligned}
f(k) & =1^{3}+2^{3}+3^{3}+\cdots+(k-1)^{3}+k^{3} \\
& =\left((1 / 4)(k-1)^{4}+(1 / 2)(k-1)^{3}+(1 / 4)(k-1)^{2}\right)+k^{3} \\
& =\cdots \text { algebra. . } \\
& =(1 / 4) k^{4}+(1 / 2) k^{3}+(1 / 4) k^{2}
\end{aligned}
$$

This concludes the inductive step, and so the formula is true by induction.

