MA 310 — Homework #9

- 1. Solve "Logical Implications in Algebraic Reasoning," parts 6–12, using careful logical reasoning.
 - (a) Solve |x+1| + |x-1| = 2. Solution. |x+1| + |x-1| = 2⚠ $[x+1 \ge 0 \text{ and } x-1 \ge 0 \text{ and } (x+1)+(x-1)=2]$ or $[x+1 \ge 0 \text{ and } x-1 \le 0 \text{ and } (x+1) - (x-1) = 2]$ or $[x+1 \le 0 \text{ and } x-1 \ge 0 \text{ and } -(x+1)+(x-1)=2]$ or $[x+1 \le 0 \text{ and } x-1 \le 0 \text{ and } -(x+1)-(x-1)=2]$ ↥ $[x \ge -1 \text{ and } x \ge 1 \text{ and } 2x = 2]$ or $[x \ge -1 \text{ and } x \le 1 \text{ and } 2 = 2] \text{ or }$ $[x \leq -1 \text{ and } x \geq 1 \text{ and } -2 = 2]$ or $[x \leq -1 \text{ and } x \leq 1 \text{ and } -2x = 2]$ ⚠ [x = 1] or $[-1 \le x \le 1]$ or $[x \in \emptyset]$ or [x = -1]↕ $-1 \le x \le 1$ (b) Solve $\frac{1}{x^2-1} = \frac{1}{3x+3}$. Solution. $\frac{1}{x^2 - 1} = \frac{1}{3x + 3}$ ↕ $[x \neq \pm 1]$ and $[\frac{1}{x^2 - 1} = \frac{1}{3x + 3}]$ $[x \neq \pm 1]$ and $[x^2 - 1 = 3x + 3]$ ⚠ $[x \neq \pm 1]$ and $[x^2 - 3x - 4 = 0]$ ↕ $[x \neq \pm 1]$ and [(x - 4)(x + 1) = 0]

$$\begin{array}{l} \left(x \neq \pm 1 \right) \text{ and } \left[(x-4) = 0 \text{ or } (x+1) = 0 \right] \\ \left(x \neq \pm 1 \right) \text{ and } \left[x = 4 \text{ or } x = -1 \right] \\ \left(x \neq \pm 1 \right) \text{ and } \left[x \in \{-1, 4\} \right] \\ \left(x \neq \pm 1 \right) \text{ and } \left[x \in \{-1, 4\} \right] \\ \left(x \neq \pm 1 \right) \text{ and } \left[x \in \{-1, 4\} \right] \\ \left(x \neq \pm 1 \right) \text{ and } \left[\frac{x^2}{x-1} = \frac{2-x}{x-1} \right] \\ \left(x \neq 1 \right) \text{ and } \left[\frac{x^2}{x-1} = \frac{2-x}{x-1} \right] \\ \left(x \neq 1 \right) \text{ and } \left[\frac{x^2}{x-1} = \frac{2-x}{x-1} \right] \\ \left(x \neq 1 \right) \text{ and } \left[x^2 = 2 - x \right] \\ \left(x \neq 1 \right) \text{ and } \left[x^2 + x - 2 = 0 \right] \\ \left(x \neq 1 \right) \text{ and } \left[(x+2)(x-1) = 0 \right] \\ \left(x \neq 1 \right) \text{ and } \left[(x+2)(x-1) = 0 \right] \\ \left(x \neq 1 \right) \text{ and } \left[(x+2)(x-1) = 0 \right] \\ \left(x \neq 1 \right) \text{ and } \left[x + 2 = 0 \text{ or } x - 1 = 0 \right] \\ \left(x \neq 1 \right) \text{ and } \left[x = -2 \text{ or } x = 1 \right] \\ \left(x \neq 1 \right) \text{ and } \left[x \in \{-2, 1\} \right] \\ \left(x \neq 1 \right) \text{ and } \left[x \in \{-2, 1\} \right] \\ \left(x \neq -2 \right) \\ \left(\text{ d) Solve } \frac{1}{\sqrt{x^2-1}} \ge \frac{1}{\sqrt{3x+3}}. \\ \text{ Solution.} \\ \frac{1}{\sqrt{x^2-1}} \ge \frac{1}{\sqrt{3x+3}} \end{array}$$

⊅ $[x^2 - 1 > 0]$ and [3x + 3 > 0] and $[\frac{1}{\sqrt{x^2 - 1}} \ge \frac{1}{\sqrt{3x + 3}}]$ [(x+1)(x-1) > 0] and [x > -1] and $[\sqrt{x^2 - 1} \le \sqrt{3x + 3}]$ [(x + 1 > 0 and x - 1 > 0) or (x + 1 < 0 and x - 1 < 0)] and [x > -1] and $[x^2 - 1 \le 3x + 3]$ [(x > -1 and x > 1) or (x < -1 and x < 1)] and [x > -1] and $[x^2 - 3x - 4 \le 0]$ ⚠ [x > 1 or x < -1] and [x > -1] and $[(x - 4)(x + 1) \le 0]$ € [x > 1 or x < -1] and [x > -1] and $[(x - 4 \ge 0 \text{ and } x + 1 \le 0) \text{ or } (x - 4 \le 0 \text{ and } x + 1 \le 0)$ $x + 1 \ge 0)$ ↕ [x > 1 or x < -1] and [x > -1] and $[(x \ge 4 \text{ and } x \le -1) \text{ or } (x \le 4 \text{ and } x \ge -1)]$ [x > 1 or x < -1] and [x > -1] and $[x \in \emptyset \text{ or } -1 \le x \le 4]$ ≘ [x > 1] and $[-1 \le x \le 4]$ ↕ $1 < x \leq 4$ (e) Solve x(2x+3) = x(x-5). Solution. x(2x+3) = x(x-5)↥ x(2x+3) - x(x-5) = 0⚠ x(2x + 3 - x + 5) = 0⚠ x(x+8) = 0↕ x = 0 or x - 8 = 0

 \uparrow x = 0 or x = 8 \uparrow $x \in \{0, 8\}$ (f) Solve $\frac{1}{\frac{1}{x}} = x$. Solution. $\stackrel{\frac{1}{\frac{1}{x}}}{\updownarrow} = x$ $x \neq 0$ and $\frac{1}{\frac{1}{x}} = x$ \uparrow $x \neq 0$ and x = x↕ $x \in \mathbf{R} \setminus \{0\}$ (g) Solve $\sqrt{x^2 - 5x + 5} = \sqrt{x - 3}$. Solution. $\sqrt{x^2 - 5x + 5} = \sqrt{x - 3}$ € $x^{2} - 5x + 5 \ge 0$ and $x - 3 \ge 0$ and $\sqrt{x^{2} - 5x + 5} = \sqrt{x - 3}$ ↕ $x^{2} - 5x + 5 \ge 0$ and $x \ge 3$ and $x^{2} - 5x + 5 = x - 3$ 1 $x^{2} - 5x + 5 \ge 0$ and $x \ge 3$ and $x^{2} - 6x + 8 = 0$ € $x^{2} - 5x + 5 \ge 0$ and $x \ge 3$ and (x - 2)(x - 4) = 0↕ $x^{2} - 5x + 5 \ge 0$ and $x \ge 3$ and [x - 2 = 0 or x - 4 = 0]↕ $x^{2} - 5x + 5 \ge 0$ and $x \ge 3$ and [x = 2 or x = 4]↕ x = 4

2. Solve "Outdoor Barbeque".

Solution.

	Nurse	Secretary	Teacher	Pilot	Hamburger	Chicken	Steak	Hot Dogs
Tom	0	0	0	1	0	0	0	1
John	0	1	0	0	1	0	0	0
Fred	1	0	0	0	0	0	1	0
Bill	0	0	1	0	0	1	0	0
Hamburger	0	1	0	0				
Chicken	0	0	1	0				
Steak	1	0	0	0				
Hot Dogs	0	0	0	1				

3. Solve "Socks".

Solution.

If you take only 3 socks, they may be of different colors, so 3 is not enough. But if you take 4 socks, you must have at least 2 socks of the same color—because if you have a set of socks with no matching colors, you can have at most one of each color; namely, a total of 3.