MA 310 - Homework \#9
 Solutions

1. Solve "Logical Implications in Algebraic Reasoning," parts 6-12, using careful logical reasoning.
(a) Solve $|x+1|+|x-1|=2$.

Solution.

$$
\begin{aligned}
& |x+1|+|x-1|=2 \\
& \hat{\mathbb{y}} \\
& {[x+1 \geq 0 \text { and } x-1 \geq 0 \text { and }(x+1)+(x-1)=2] \text { or }} \\
& {[x+1 \geq 0 \text { and } x-1 \leq 0 \text { and }(x+1)-(x-1)=2] \text { or }} \\
& {[x+1 \leq 0 \text { and } x-1 \geq 0 \text { and }-(x+1)+(x-1)=2] \text { or }} \\
& {[x+1 \leq 0 \text { and } x-1 \leq 0 \text { and }-(x+1)-(x-1)=2]} \\
& \hat{\mathbb{}} \\
& {[x \geq-1 \text { and } x \geq 1 \text { and } 2 x=2] \text { or }} \\
& {[x \geq-1 \text { and } x \leq 1 \text { and } 2=2] \text { or }} \\
& {[x \leq-1 \text { and } x \geq 1 \text { and }-2=2] \text { or }} \\
& {[x \leq-1 \text { and } x \leq 1 \text { and }-2 x=2]} \\
& \mathbb{\imath} \\
& {[x=1] \text { or }[-1 \leq x \leq 1] \text { or }[x \in \emptyset] \text { or }[x=-1]} \\
& \mathbb{\Downarrow} \\
& -1 \leq x \leq 1
\end{aligned}
$$

(b) Solve $\frac{1}{x^{2}-1}=\frac{1}{3 x+3}$.

Solution.

```
\frac{1}{\mp@subsup{x}{}{2}-1}=\frac{1}{3x+3}
|
[x\not=\pm1] and [\frac{1}{\mp@subsup{x}{}{2}-1}=\frac{1}{3x+3}]
|
[x\not=\pm1] and [ }\mp@subsup{x}{}{2}-1=3x+3
|
[x\not=\pm1] and [ [2 - 3x-4=0]
|
[x\not= 土1] and [(x-4)(x+1)=0]
```

```
|
[x\not= 土1] and [(x-4)=0 or (x+1)=0]
|
[x\not=\pm1] and [x=4 or }x=-1
|
[x\not=\pm1] and [x\in{-1,4}]
|
x=4
(c) Solve \(\frac{x^{2}}{x-1}=\frac{2-x}{x-1}\).
```


Solution.

$\frac{x^{2}}{x-1}=\frac{2-x}{x-1}$
I
$[x \neq 1]$ and $\left[\frac{x^{2}}{x-1}=\frac{2-x}{x-1}\right]$
॥
$[x \neq 1]$ and $\left[x^{2}=2-x\right]$
I
$[x \neq 1]$ and $\left[x^{2}+x-2=0\right]$
§
$[x \neq 1]$ and $[(x+2)(x-1)=0]$
§
$[x \neq 1]$ and $[(x+2)(x-1)=0]$
§
$[x \neq 1]$ and $[x+2=0$ or $x-1=0]$
§
$[x \neq 1]$ and $[x=-2$ or $x=1]$
\uparrow
$[x \neq 1]$ and $[x \in\{-2,1\}]$
I
$x=-2$
(d) Solve $\frac{1}{\sqrt{x^{2}-1}} \geq \frac{1}{\sqrt{3 x+3}}$.

Solution.

```
§
\(\left[x^{2}-1>0\right]\) and \([3 x+3>0]\) and \(\left[\frac{1}{\sqrt{x^{2}-1}} \geq \frac{1}{\sqrt{3 x+3}}\right]\)
\(\Uparrow\)
\([(x+1)(x-1)>0]\) and \([x>-1]\) and \(\left[\sqrt{x^{2}-1} \leq \sqrt{3 x+3}\right]\)
§
\([(x+1>0\) and \(x-1>0)\) or \((x+1<0\) and \(x-1<0)]\) and \([x>-1]\) and
\(\left[x^{2}-1 \leq 3 x+3\right]\)
\(\Uparrow\)
\([(x>-1\) and \(x>1)\) or \((x<-1\) and \(x<1)]\) and \([x>-1]\) and \(\left[x^{2}-3 x-4 \leq 0\right]\)
§
\([x>1\) or \(x<-1]\) and \([x>-1]\) and \([(x-4)(x+1) \leq 0]\)
§
\([x>1\) or \(x<-1]\) and \([x>-1]\) and \([(x-4 \geq 0\) and \(x+1 \leq 0)\) or \((x-4 \leq 0\) and
\(x+1 \geq 0)]\)
\(\uparrow\)
\([x>1\) or \(x<-1]\) and \([x>-1]\) and \([(x \geq 4\) and \(x \leq-1)\) or \((x \leq 4\) and \(x \geq-1)]\)
\(\Uparrow\)
\([x>1\) or \(x<-1]\) and \([x>-1]\) and \([x \in \emptyset\) or \(-1 \leq x \leq 4]\)
\(\uparrow\)
\([x>1]\) and \([-1 \leq x \leq 4]\)
§
\(1<x \leq 4\)
(e) Solve \(x(2 x+3)=x(x-5)\).
```


Solution.

```
\(x(2 x+3)=x(x-5)\)
```

$x(2 x+3)=x(x-5)$
\Uparrow
\Uparrow
$x(2 x+3)-x(x-5)=0$
$x(2 x+3)-x(x-5)=0$
§
§
$x(2 x+3-x+5)=0$
$x(2 x+3-x+5)=0$
§
§
$x(x+8)=0$
$x(x+8)=0$
§
§
$x=0$ or $x-8=0$

```
\(x=0\) or \(x-8=0\)
```

```
|
x=0 or }x=
|
x\in{0,8}
(f) Solve \(\frac{1}{\frac{1}{x}}=x\).
```


Solution.

$\frac{1}{\frac{1}{x}}=x$
\Uparrow
$x \neq 0$ and $\frac{1}{\frac{1}{x}}=x$
§
$x \neq 0$ and $x=x$
I
$x \in \mathbf{R} \backslash\{0\}$
(g) Solve $\sqrt{x^{2}-5 x+5}=\sqrt{x-3}$.

Solution.

```
\sqrt{}{\mp@subsup{x}{}{2}-5x+5}=\sqrt{}{x-3}
|
x}-5x+5\geq0\mathrm{ and }x-3\geq0\mathrm{ and }\sqrt{}{\mp@subsup{x}{}{2}-5x+5}=\sqrt{}{x-3
|
x}-5x+5\geq0\mathrm{ and }x\geq3\mathrm{ and }\mp@subsup{x}{}{2}-5x+5=x-
|
x}-5x+5\geq0\mathrm{ and }x\geq3\mathrm{ and }\mp@subsup{x}{}{2}-6x+8=
|
x}-5x+5\geq0\mathrm{ and }x\geq3\mathrm{ and (x-2)(x-4) =0
|
x}-5x+5\geq0\mathrm{ and }x\geq3\mathrm{ and [x-2=0 or }x-4=0
|
x}-5x+5\geq0 and x\geq3 and [x=2 or x=4
|
x=4
```

2. Solve "Outdoor Barbeque".

Solution.

	Nurse	Secretary	Teacher	Pilot	Hamburger	Chicken	Steak	Hot Dogs
Tom	0	0	0	1	0	0	0	1
John	0	1	0	0	1	0	0	0
Fred	1	0	0	0	0	0	1	0
Bill	0	0	1	0	0	1	0	0
Hamburger	0	1	0	0				
Chicken	0	0	1	0				
Steak	1	0	0	0				
Hot Dogs	0	0	0	1				

3. Solve "Socks".

Solution.

If you take only 3 socks, they may be of different colors, so 3 is not enough. But if you take 4 socks, you must have at least 2 socks of the same color-because if you have a set of socks with no matching colors, you can have at most one of each color; namely, a total of 3 .

