Basic Facts on Equivalence

1. Two positions α and α^{\prime} in normal-play games are equivalent if for every position β in any normal-play game, the two positions $\alpha+\beta$ and $\alpha^{\prime}=\beta$ have the same type. Write $\alpha \equiv \alpha^{\prime}$.
2. Not the same as isomorphic.
3. Proposition 2.10. If α, β, and γ are positions in normal-play games, then
(a) $\alpha \equiv \alpha$ (Reflexive Property).
(b) $\alpha \equiv \beta$ implies $\beta \equiv \alpha$ (Symmetric Property).
(c) $\alpha \equiv \beta$ and $\beta \equiv \gamma$ implies $\alpha \equiv \gamma$ (Transitive Property).

Thus we have an equivalence relation.
4. Proposition 2.11. If α is equivalent to α^{\prime}, then α and α^{\prime} have the same type.
5. The converse statement is not a proposition. So equivalence is a finer distinction than type.
6. Proposition 2.12. If α, β, γ are positions in normal-play games, then
(a) $\alpha+\beta \equiv \beta+\alpha$ (Commutative Property).
(b) $(\alpha+\beta)+\gamma \equiv \alpha+(\beta+\gamma)$ (Associative Property).
7. Lemma 2.13. For positions of normal-play games,
(a) If $\alpha \equiv \alpha^{\prime}$, then $\alpha+\beta \equiv \alpha^{\prime}+\beta$.
(b) If $\alpha_{i} \equiv \alpha_{i}^{\prime}$ for $1 \leq i \leq n$, then $\alpha_{1}+\cdots+\alpha_{n} \equiv \alpha_{1}^{\prime}+\cdots+\alpha_{n}^{\prime}$.
(c) If $\alpha_{i} \equiv \alpha_{i}^{\prime}$ for $1 \leq i \leq m$ and $\beta_{i} \equiv \beta_{i}^{\prime}$ for $1 \leq i \leq n$, then $\left\{\alpha_{1}, \ldots, \alpha_{m} \mid \beta_{1}, \ldots, \beta_{n}\right\} \equiv$ $\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{m}^{\prime} \mid \beta_{1}^{\prime}, \ldots, \beta_{n}^{\prime}\right\}$.
8. Lemma 2.14. If β is of type P , then $\alpha+\beta \equiv \alpha$. "Type P behaves like zero."
9. Proposition 2.15. If α and α^{\prime} are type P , then $\alpha \equiv \alpha^{\prime}$. "Uniqueness of zero."
10. Lemma 2.16. If $\alpha+\beta$ and $\alpha^{\prime}+\beta$ are both type P then $\alpha \equiv \alpha^{\prime}$. "Uniqueness of additive inverse."

