Basic Facts on Equivalence

- 1. Two positions α and α' in normal-play games are equivalent if for every position β in any normal-play game, the two positions $\alpha + \beta$ and $\alpha' = \beta$ have the same type. Write $\alpha \equiv \alpha'$.
- 2. Not the same as isomorphic.
- 3. Proposition 2.10. If α , β , and γ are positions in normal-play games, then
 - (a) $\alpha \equiv \alpha$ (Reflexive Property).
 - (b) $\alpha \equiv \beta$ implies $\beta \equiv \alpha$ (Symmetric Property).
 - (c) $\alpha \equiv \beta$ and $\beta \equiv \gamma$ implies $\alpha \equiv \gamma$ (Transitive Property).

Thus we have an equivalence relation.

- 4. Proposition 2.11. If α is equivalent to α' , then α and α' have the same type.
- 5. The converse statement is not a proposition. So equivalence is a finer distinction than type.
- 6. Proposition 2.12. If α , β , γ are positions in normal-play games, then
 - (a) $\alpha + \beta \equiv \beta + \alpha$ (Commutative Property).
 - (b) $(\alpha + \beta) + \gamma \equiv \alpha + (\beta + \gamma)$ (Associative Property).
- 7. Lemma 2.13. For positions of normal-play games,
 - (a) If $\alpha \equiv \alpha'$, then $\alpha + \beta \equiv \alpha' + \beta$.
 - (b) If $\alpha_i \equiv \alpha'_i$ for $1 \leq i \leq n$, then $\alpha_1 + \cdots + \alpha_n \equiv \alpha'_1 + \cdots + \alpha'_n$.
 - (c) If $\alpha_i \equiv \alpha'_i$ for $1 \leq i \leq m$ and $\beta_i \equiv \beta'_i$ for $1 \leq i \leq n$, then $\{\alpha_1, \dots, \alpha_m | \beta_1, \dots, \beta_n\} \equiv \{\alpha'_1, \dots, \alpha'_m | \beta'_1, \dots, \beta'_n\}$.
- 8. Lemma 2.14. If β is of type P, then $\alpha + \beta \equiv \alpha$. "Type P behaves like zero."
- 9. Proposition 2.15. If α and α' are type P, then $\alpha \equiv \alpha'$. "Uniqueness of zero."
- 10. Lemma 2.16. If $\alpha + \beta$ and $\alpha' + \beta$ are both type P then $\alpha \equiv \alpha'$. "Uniqueness of additive inverse."