7 Quadrilaterals

This material is summarized from Section 3.7 of Kay.

Definition: If A, B, C, and D are any four points lying in a plane such that no three of them are collinear, and if the points are so situated that no pair of open segments $\stackrel{\circ}{A B} \stackrel{\circ}{A B} \overline{B C}, \stackrel{\circ}{C}-\stackrel{\circ}{D}$, and $\stackrel{\circ}{D A}$ have any points in common, then the set $\diamond A B C D=\overline{A B} \cup \overline{B C} \cup \overline{C D} \cup \overline{D A}$ is a quadrilateral, with vertices A, B, C, D; sides $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}$; diagonals $\overline{A C}, \overline{B D}$, and angles $\angle D A B, \angle A B C$, $\angle B C D, \angle C D A$.

Definition: A quadrilateral is convex if its diagonals intersect.

Lemma: The diagonals of a convex quadrilateral intersect at an interior point on each diagonal.

Lemma: If $\diamond A B C D$ is a convex quadrilateral, then D lies in the interior of $\angle A B C$ (and similarly for the other vertices).

Lemma: If A, B, C, and D are consecutive vertices of a convex quadrilateral, then $m \angle B A D=m \angle B A C+m \angle C A D$.

Definition: Two quadrilaterals $\diamond A B C D$ and $\diamond X Y Z W$ are congruent under the correspondence $A B C D \leftrightarrow X Y Z W$ iff all pairs of corresponding sides and angles under the correspondence are congruent (i.e., CPCF). Such congruence will be denoted by $\diamond A B C D \cong \diamond X Y Z W$.

Theorem 3.7.1 (SASAS): Suppose that two convex quadrilaterals $\diamond A B C D$ and $\diamond X Y Z W$ satisfy the SASAS Hypothesis under the correspondence $A B C D \leftrightarrow X Y Z W$. That is, three consecutive sides and the two angles included by those sides of $\diamond A B C D$ are congruent, respectively, to the corresponding three consecutive sides and two included angles of $\diamond X Y Z W$. Then $\diamond A B C D \cong \diamond X Y Z W$. (This is Theorem 1 of Section 3.7 of Kay.)

There are other congruence theorems for, such as $A S A S A, S A S A A$, and $S A S S S$.
What about $A S A A$?

Definition: A rectangle is a convex quadrilateral having four right angles.

Definition: Let $\overline{A B}$ be any line segment, and erect two perpendiculars at the endpoints A and B. Mark off points C and D on these perpendiculars so that C and D lie on the same side of line $\overleftrightarrow{A B}$, and $B C=A D$. Join C and D. The resulting quadrilateral is a Saccheri Quadrilateral. Side $\overline{A B}$ is called the base, $\overline{B C}$ and $\overline{A D}$ the legs, and side $\overline{C D}$ the summit. The angles at C and D are called the summit angles.

Lemma: A Saccheri Quadrileral is convex.

Theorem 3.7.2: The summit angles of a Saccheri Quadrilateral are congruent. (This is Theorem 2 of Section 3.7 of Kay.)

Corollary:

1. The diagonals of a Saccheri Quadrilateral are congruent.
2. The line joining the midpoints of the base and the summit of a Saccheri Quadrilateral is the perpendicular bisector of both the base and summit.
3. If each of the summit angles of a Saccheri Quadrilateral is a right angle, the quadrilateral is a rectangle, and the summit is congruent to the base.
4. If the summit angles of a Saccheri Quadrilateral are acute, the summit has greater length than the base.

Theorem 3.7.3: Let $\triangle A B C$ be any triangle. Let M and N be the midpoints of $\overline{A B}$ and $\overline{A C}$, respectively. Let $\overline{B B^{\prime}}$ and $\overline{C C^{\prime}}$ be perpendiculars to $\overleftrightarrow{M N}$, with B^{\prime} and C^{\prime} lying on $\overleftrightarrow{M N}$. Then $\diamond B C C^{\prime} B^{\prime}$ is a Saccheri Quadrilateral with base $\overline{B^{\prime} C^{\prime}}$ and summit $\overline{B C}$. Moreover, the angle sum of $\triangle A B C$ equals twice the measure of either summit angle of the quadrilateral, and $M N=\frac{1}{2} B^{\prime} C^{\prime}$. (This is Theorem 3 of Section 3.7 of Kay.)

Corollary:

1. The summit angles of a Saccheri Quadrilateral are either acute or right.
2. The summit of a Saccheri Quadrilateral has length greater than or equal to that of the base.
3. The line joining the midpoints of two sides of a triangle has length less than or equal to one-half that of the third side.
