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1 Axiomatic Systems

1.1 Initial Explorations

We begin with a puzzle based on a creation of Ivan Bell. Suggestion: First watch the trailer
for the movie Contact: http://www.youtube.com/watch?v=SRoj3jK37Vc.

Problem 1.1.1 (SETI Puzzle) The following message has been received from outer space.
You believe it is from an alien intelligence in our solar system with a sincere desire to
communicate. What do you make of it? The message contains mixtures of 24 different
symbols, which we will represent here, for convenience, by the letters from A through Z
(omitting O and X). “(Each symbol is presumably radioed by a combination of beeps, but
we need not be concerned with those details.) The punctuation marks are not part of the
message but indications of time lapses. Adjacent letters are sent with short pauses between
them. A space between letters means a longer pause. Commas, semicolons, and periods
represent progressively longer pauses. The longest time lapses come between paragraphs,
which are numbered for the reader’s convenience; the numbers are not part of the message.”
To get you started, the first paragraph is merely a transmission of the 24 symbols to be used
in the rest of the message.

1. A. B. C. D. E. F. G. H. I. J. K. L. M. N. P. Q. R. S. T. U. V. W. Y. Z.

2. A A, B; A A A, C; A A A A, D; A A A A A, E; A A A A A A, F; A A A A A A A,
G; A A A A A A A A, H; A A A A A A A A A, I; A A A A A A A A A A, J.

3. A K A L B; A K A K A L C; A K A K A K A L D. A K A L B; B K A L C; C K A
L D; D K A L E. B K E L G; G L E K B. F K D L J; J L F K D.

4. C M A L B; D M A L C; I M G L B.

5. C K N L C; H K N L H. D M D L N; E M E L N.

6. J L AN; J K A L AA; J K B L AB; AA K A L AB. J K J L BN; J K J K J L CN.
FN K G L FG.

7. B P C L F; E P B L J; F P J L FN.

1

http://www.youtube.com/watch?v=SRoj3jK37Vc


8. F Q B L C; J Q B L E; FN Q F L J.

9. C R B L I; B R E L CB.

10. J P J L J R B L S L ANN; J P J P J L J R C L T L ANNN. J P S L T; J P T L J R
D.

11. A Q J L U; U Q J L A Q S L V.

12. U L WA; U P B L WB; AWD M A L WD L D P U. V L WNA; V P C L WNC. V Q
J L WNNA; V Q S L WNNNA. J P EWFGH L EFWGH; S P EWFGH L EFGWH.

13. GIWIH Y HN; T K C Y T. Z Y CWADAF.

14. D P Z P WNNIB R C Q C.

Problem 1.1.2 (SETI Puzzle Follow Up) What do you think of the statement that
“Mathematics is the only truly universal language”? (From the movie Contact.)

Problem 1.1.3 (Carrollian System I) Contact has been established with an alien race
(the Carrollians) and they convey the following information to you about a mathematical
structure of interest to them.

A. There is a finite number of toves.

B. There is a finite number of borogoves.

C. Given any borogove there are exactly two different toves that gimble with it.

Prove that the number of toves that gimble with an odd number of borogoves is even.

Problem 1.1.4 (Carrollian System I Follow Up) What is the meaning of toves and
borogoves? What does gimble mean? What representations, if any, did you create while
working on this problem?
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Problem 1.1.5 (Handshaking) At a recent conference, various pairs of people shook
hands. Prove that the number of people who shook hands an odd number of times is
even.

Problem 1.1.6 (Graphs) A graph G = (V,E) consists of a finite set V of vertices and a
finite set E of edges. Assume there are no loops, so each edge joins two distinct vertices.
The degree of a vertex is the number of edges joined to it. Prove that the number of vertices
of odd degree is even.

Problem 1.1.7 (Lines) Consider a finite collection L of lines in the plane with the property
that no three pass through a common intersection point. Let P be any subset of the collection
of all the various intersection points of these lines. Prove that the number of lines of L
containing an odd number of points in P is even.

Problem 1.1.8 (Polyhedra) Join together a finite collection of convex polygons edge to
edge to enclose a region of space, with two polygons meeting at each edge. Prove that the
number of polygons with an odd number of sides is even.

Problem 1.1.9 (Labeled Triangles) Draw a triangle T and label its vertices 1, 2, and 3.
Subdivide the triangle into smaller triangles, introducing new vertices if you wish, which can
also be along the edges of T . Label each new vertex 1, 2, or 3, any way you want, with the
following restriction: You can only use labels 1 and 2 for the new vertices along the original
“12 edge” of T , and similarly restrict the labeling for the other edges of T . Prove that there
must be a “123 triangle.”

3



1.2 Features of Axiomatic Systems

One motivation for developing axiomatic systems is to determine precisely which properties
of certain objects can be deduced from which other properties. The goal is to choose a
certain fundamental set of properties (the axioms) from which the other properties of the
objects can be deduced (e.g., as theorems). Apart from the properties given in the axioms,
the objects (nouns) and relations (verbs) are regarded as undefined.

As a powerful consequence, once you have shown that any particular collection of objects
satisfies the axioms however unintuitive or at variance with your preconceived notions these
objects may be, without any additional effort you may immediately conclude that all the
theorems must also be true for these objects.

We want to choose our axioms wisely. We do not want them to lead to contradictions;
i.e., we want the axioms to be consistent. We also strive for economy and want to avoid
redundancy—not assuming any axiom that can be proved from the others; i.e., we want each
axiom to be independent of the others so that the axiomatic system as a whole is independent.
Finally, we may wish to insist that we be able to prove or disprove any statement about our
objects from the axioms alone. If this is the case, we say that the axiomatic system is
complete.

We can verify that an axiomatic system is consistent by finding a model for the axioms—a
choice of objects and relations that satisfy the axioms.

We can verify that a specified axiom is independent of the others by finding two models—one
for which all of the axioms hold, and another for which the specified axiom is false but the
other axioms are true.

We can verify that an axiomatic system is complete by showing that there is essentially only
one model for it (all models are isomorphic); i.e., that the system is categorical.

Problem 1.2.1 Consider the system in Problem 1.1.3.

1. Explain why you know that the system is consistent.

2. Determine whether or not each axiom of the system is independent of the others.
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3. Determine whether or not the system is categorical.

Problem 1.2.2 Consider the following axioms for a certain committee structure (though
we could just as well use “toves” for people, “borogoves” for committees, and “gimble” for
membership):

A. There are exactly four people.

B. There are exactly four committees.

C. Each committee consists of exactly two people.

D. No two committees have the same set of people as members.

1. Is this system consistent?

2. If so, for each axiom, determine whether or not it is independent of the others.

3. Is this system categorical?

Problem 1.2.3 Consider the following axioms for a certain committee structure:

A. There are exactly four people.

B. There are exactly five committees.

C. Each committee consists of exactly two people.

D. No two committees have the same set of people as members.

1. Is this system consistent?

2. If so, for each axiom, determine whether or not it is independent of the others.

3. Is this system categorical?
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Problem 1.2.4 Consider the following axioms for a certain committee structure:

A. There are exactly four people.

B. There are exactly six committees.

C. Each committee consists of exactly two people.

D. No two committees have the same set of people as members.

E. Each person serves on exactly three committees.

1. Is this system consistent?

2. If so, for each axiom, determine whether or not it is independent of the others.

3. Is this system categorical?

Problem 1.2.5 Consider the following axioms for a certain committee structure:

A. There are exactly four people.

B. There are exactly seven committees.

C. Each committee consists of exactly two people.

D. No two committees have the same set of people as members.

1. Is this system consistent?

2. If so, for each axiom, determine whether or not it is independent of the others.

3. Is this system categorical?

Problem 1.2.6 (Carrollian System II) Consider the following system:
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A. There is a finite number of toves.

B. There is a finite number of borogoves.

C. Given any borogove there are exactly two different toves that gimble with it, and
further this is the only borogove that these two toves gimble with.

D. Every tove gimbles with a different number of borogoves.

1. Is this system consistent?

2. What are the implications for the settings of Problems 1.1.5, 1.1.6, 1.1.7, and 1.1.8?

Problem 1.2.7 (Carrollian System III) Consider the following system:

A. Given any two different toves, there is exactly one borogove that gimbles with both of
them.

B. Given any two different borogoves, there is exactly one tove that gimbles with both of
them.

C. There exist four toves, no three of which gimble with a common borogove.

D. There exists a borogove that gimbles with exactly three toves.

1. Is this system consistent?

2. Determine whether or not each axiom of the system is independent of the others.

3. Determine whether or not the system is categorical.

Problem 1.2.8 Show that the following interpretation is a valid model for the system in
Problem 1.2.7. (1) Toves are triples of the form (x, y, z) where each of x, y, and z are 0 or
1, and not all of them are zero. (2) Borogoves are triples of the form (x, y, z) where each of
x, y, and z are 0 or 1, and not all of them are zero. (3) A tove (x1, y1, z1) gimbles with a
borogove (x2, y2, z2) if x1x2 + y1y2 + z1z2 is even.

7



Problem 1.2.9 Drop axiom (D.) from the system in Problem 1.2.7 and assume instead that
that there exists a borogove that gimbles with exactly q + 1 toves, q ≥ 2. Prove that every
borogove gimbles with exactly q + 1 toves, every tove gimbles with exactly q + 1 borogoves,
there is a total of q2 + q + 1 toves, and there is a total of q2 + q + 1 borogoves.

Problem 1.2.10 Drop axiom (D.) from the system in Problem 1.2.7 and assume instead
that that there exists a borogove that gimbles with exactly q + 1 toves, q ≥ 2.

1. Prove that there exist four borogoves, no three of which gimble with a common tove.

2. Prove that there exists a tove that gimbles with exactly q + 1 borogoves.

(Note that this implies that the terms “tove” and “borogove” are interchangeable in every
theorem of this system.)

Problem 1.2.11 Drop axiom (D.) from the system of Problem 1.2.7 and find a model
containing exactly 13 toves.
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1.3 Finite Projective Planes

Dropping axiom (D.) from the system in Problem 1.2.7 (and, if you wish, replacing the words
“toves” with “points”, “borogoves” with “lines,” and “gimbles with” with “is incident to”),
we define structures called finite projective planes. I have a game called Configurations that
is designed to introduce the players to the existence, construction, and properties of finite
projective planes. When I checked in August 2014 the game was available from Games for
Thinkers, http://wffnproof.com/home, for a cost of $25.00.

The next two problems come from this game:

Problem 1.3.1 In each box below write a number from 1 to 7, subject to the two rules:
(1) The three numbers in each column must be different; (2) the same pair of numbers must
not occur in two different columns.

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6 Col 7
Row 1
Row 2
Row 3

9
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Problem 1.3.2 Use the solution to the above problem to label the seven points of the
following diagram with the numbers 1 through 7 so that the columns of the above problem
correspond to the triples of points in the diagram below that lie on a common line or circle.

Problem 1.3.3 Prove that the following is a model of a finite projective plane. Let F be
a finite field of order q. (For example, we may take F to be the integers mod p where p is
a prime.) (1) Points are triples of the form (x, y, z) where each of x, y, and z are in F, not
all of them are zero, and two points are considered equivalent if one is a nonzero multiple of
the other. (2) Lines are triples of the form (a, b, c) where each of a, b, and c are in F, not all
of them are zero, and two lines are considered equivalent if one is a nonzero multiple of the
other. (3) A point (x, y, z) is incident with a line (a, b, c) if ax+ by + cz = 0.

Problem 1.3.4 Do some research on what is known and is not known about sizes of pro-
jective planes.

Problem 1.3.5 Play the game of SET. (This game can be found, for example, on http:

//www.amazon.com under the name “SET Game” by SET Enterprises, Inc., and there is
also a SET app for the iPad.) An online daily SET puzzle of the day can be found here:

10
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http://www.setgame.com/set/puzzle_frame.htm. Find some ways to think of this game
as a model for a set of axioms for points and lines (and planes?) that you design.
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1.4 Finite Affine Planes

Close relatives of finite projective planes are finite affine planes, which can be defined by the
following set of axioms. Points, lines, and incidence are undefined terms. Also, we will say
that two lines are parallel if there is no point that is incident to both of them.

A. There is a finite number of points.

B. There is a finite number of lines.

C. Given any two different points, there is exactly one line incident to both of them.

D. Given any point and any line not incident to that point, there is exactly one line
incident to the given point that is parallel to the given line.

E. There exist three points that are not incident to a common line.

Problem 1.4.1 Construct some models for finite affine planes.

Problem 1.4.2 Prove that in a finite affine plane, if `,m, n are lines with ` parallel to m
and m parallel to n, then ` is parallel to n.

Problem 1.4.3 Prove that if you begin with a model for any finite projective plane, and
remove any one line and all points incident to it, the result is a model for a finite affine plane.

Problem 1.4.4 Prove that if you begin with a model for any finite affine plane it is possible
to reverse the process of the previous problem; e.g., there exists a finite projective plane
having a particular line whose removal, together with its incident points, results in the given
finite affine plane.

Problem 1.4.5 Use Problems 1.3.3 and 1.4.3 to construct a model for a finite affine plane.
Suggestion: Remove all points (x, y, z) such that z = 0.
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1.5 Block Designs

Another important combinatorial structure that is defined by incidence axioms is a block
design. The axioms for a balanced incomplete block design (BIBD) of type (v, k, λ, r, b) are:

A. There is a finite set X of v elements.

B. There is a finite set of b blocks.

C. Each block is a subset of X of size k.

D. Each element of X is in exactly r blocks.

E. For every pair of distinct elements of X there are exactly λ blocks containing both of
them.

Problem 1.5.1 Construct some models for BIBD’s.

Problem 1.5.2 Prove that if there exists a BIBD of type (v, k, λ, r, b), then

1. vr = bk.

2. λ(v − 1) = r(k − 1).

3. b = v(v−1)λ
k(k−1) .

4. r = λ(v−1)
k−1 .

Problem 1.5.3 Prove that finite projective planes and finite affine planes are BIBD’s.

Problem 1.5.4 (Kirkman’s Schoolgirl Problem) Solve the following famous puzzle
proposed by T. P. Kirkman in 1847.
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A school-mistress is in the habit of taking her girls for a daily walk. The girls are
fifteen in number, and are arranged in five rows of three each, so that each girl
might have two companions. The problem is to dispose them so that for seven
consecutive days no girl will walk with any of her school-fellows in any triplet more
than once. (Ball and Coxeter, Mathematical Recreations and Essays, University
of Toronto Press, 1974, Chapter X.)

14



1.6 Categorical and Complete

In the book Geometry: An Introduction by Günter Ewald, a different definition of “complete”
is given. An axiomatic system is called categorical if all models for it are isomorphic. An
axiomatic system is called complete if no model for it can be extended by adding “new
objects in such a way that all previous relations are carried over and such that all previous
axioms remain true in the enlarged system.” Here are two exercises from that book:

Problem 1.6.1 Show that the axioms of a group together with the following axiom are
complete but not categorical: “The group contains precisely four elements.”

Problem 1.6.2 Show that the axioms of a group together with the following axiom are
categorical but not complete: “The group has infinitely many elements and consists of all
powers of a single group element.”

15



1.7 Other Axiomatic Systems

For perhaps understandable reasons most non-mathematics majors associate axiomatic sys-
tems exclusively with the realm of geometry, not realizing its all-pervading presence in math-
ematics.

Problem 1.7.1 Look up examples of other axiomatic systems. Here are some examples:

1. Equivalence Relations

2. Sets

3. Integers

4. Real numbers

5. Groups

6. Rings

7. Fields

8. Vector spaces

9. Metric spaces

10. Topological spaces

11. Probability spaces

12. Graphs

13. Partially ordered sets

14. Matroids

16



1.8 Some Milestones in Geometry (Very Incomplete)

1. Ancient. Examples:

(a) Egyptian, c. 2000 BC. Some Pythagorean triples. Estimates for area of circle.
Volumes of truncated pyramids.

(b) Babylonian, c. 1900–1600 BC. Pythagorean triples. Estimates for area of circle.
Base 60 system leading to our use of 360 degrees in a circle.

2. Greek

(a) Thales, 635–543 BC. Demonstrative mathematics.

(b) Pythagoras, 582–496 BC. Pythagorean Theorem, irrational quantities.

(c) Plato, 427–347 BC. School—“Let none ignorant of geometry enter here.”
Straightedge and compass constructions.

(d) Euclid, c. 325–265 BC. The Elements of Geometry. Perhaps the second most
widely published book in human history. Logical organization via an axiomatic
system.

(e) Archimedes, 287–212 BC. One of the greatest mathematicians in human history.
Area of circle, volume and surface area of sphere. Developer of The Method.

3. India. Numerous contributions.

4. China. Numerous contributions.

5. Islam, 640 AD onward. In addition to developing new mathematics, Islamic centers of
learning preserved Greek mathematics, which declined in Europe.

6. Filippo Brunelleschi (1404–1472), Johannes Kepler (1571–1630), Gérard Desargues
(1591–1661). Projective geometry and perspective drawings.

7. Cartesian coordinates and analytic geometry. René Descartes, 1596–1650, and Pierre
de Fermat, 1601–1665.

8. Calculus. Isaac Newton, 1642–1727, and Gottfried Wilhelm von Leibniz, 1646–1716.

9. Non-Euclidean geometry. Carl Friedrich Gauss (1777–1855), János Bolyai (1802–1860),
Nikolai Lobachevsky (1792–1856), Bernhard Riemann (1826–1866). Proved the inde-
pendence of Euclid’s parallel
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by finding models of non-Euclidean geometry. Riemann’s geometry provided the basis
for the geometry of Einstein’s general relativity.

10. Klein, 1849–1925. Non-Euclidean geometry. Study of geometries in the context of
transformations.

11. David Hilbert, 1862–1943. Axiomatic system for Euclidean Geometry presented in
Foundations of Geometry.

12. Jakob Steiner (1796–1863), Thomas Kirkman (1806–1895), Gino Fano (1871–1952).
Finite geometries.

13. George Birkhoff, 1884–1944. Axiomatic system for Euclidean geometry with ruler and
angle measurement axioms.

14. Committee of Ten, 1892. Made recommendations regarding the high school curriculum.

15. School Math Study Group, 1958–1977. Created in the wake of Sputnik, resulted in
“New Math” movement.

16. National Council of Teachers of Mathematics Principles and Standards for School
Mathematics, 2000.

17. Common Core State Standards for Mathematics, 2010.
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1.9 Euclidean Geometry

Problem 1.9.1 Here is a website for Euclid’s Elements: http://aleph0.clarku.edu/

~djoyce/java/elements/elements.html. Look through this and do some research on the
Elements.

1. What is its history and significance?

2. Summarize the content of each of the thirteen books. Look for your favorite theorems!
What geometrical results appear to be missing?

3. Use GeoGebra to make some of the constructions from Book I.

4. What is the parallel postulate?

5. What is the first proposition in Book I that relies upon the parallel postulate?

6. Describe the historical development ultimately leading to the proof of the independence
of the parallel postulate.

7. What are some implicit assumptions made by Euclid that are not explicitly spelled
out?

Problem 1.9.2 You can find and download the book Foundations of Geometry by David
Hilbert from http://books.google.com.

1. What is the significance of this book?

2. Compare the axioms in this book to the postulates of Euclid.

Problem 1.9.3 Here is the website for the School Math Study Group (SMSG) high
school texts: http://onlinebooks.library.upenn.edu/webbin/book/lookupname?key=

School%20Mathematics%20Study%20Group. Study Units 13 and 14.

1. Compare the axioms in this book to those of Hilbert.
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2. Which results lead to the definition of ordered pairs of coordinates for points in the
plane?

3. Which results lead to the ability to define trigonometric ratios?

Problem 1.9.4 Here is the website for the Common Core State Standards for Mathematics:
http://www.corestandards.org/Math. Read the section on geometry in high school.

1. How does this compare to the SMSG material?

2. What topics do you feel most comfortable with? Least comfortable with?
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1.10 Personal Musings

I believe that there are several different viewpoints from which people (and mathematicians)
may think about axiomatic systems. Let me elaborate a bit with respect to views of geometry.

Viewpoints:

1. We have an image in our minds of geometrical objects, and we regard geometry as a
(large) collection of facts and properties, not necessarily organized in any particular
way.

2. We have an image in our minds of geometrical objects, and we organize the facts from
simplest to more complicated, with later facts provable from earlier facts. The simplest
facts are regarded as “self-evident” and therefore exempt from proof.

3. We have an image in our minds of geometrical objects, and we organize facts as in (2),
referring to the simplest, unproven facts, as the axioms. We recognize that despite our
mental image, we cannot use any properties in our proofs that are not derivable from
the axioms.

4. We have an image in our minds of geometrical objects, and we organize facts as in (3).
We further recognize that despite our mental image, objects and relations specified in
the axioms (such as “point”, “line”, “incidence”, “between”) are truly undefined, and
that therefore in any other model in which we attach an interpretation to the undefined
objects and relations for which the axioms hold, all subsequent theorems will hold also.

5. We have an image in our minds of geometrical objects, and we organize facts as in (4).
But we further become familiar with and work with alternative models, and models of
alternative axiom systems.

6. We have an image in our minds of geometrical objects, and we organize facts as in (5).
But we fully recognize that all proofs in an axiom system are completely independent
of any image in anyone’s mind. (If we receive a set of axioms from an alien race about
its version of geometry, we realize that we can prove the theorems without knowing
what is in the minds of the aliens.)

7. We regard the formal system of axioms and theorems as all that there is—there is
“nothing more out there” in terms of mathematical reality. (The aliens may in fact
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have nothing in their heads but operate formally with the symbols and procedures of
formal logic.)

I distinctly remember the struggle I had in high school of trying to understand the teacher’s
explanation of viewpoints (3) and (4), but I don’t believe I really understood viewpoints (4)
and (5) until college. I believe that I presently operate in practice from viewpoints (5) and
(6). Computer automated proof systems (but not necessarily those who use them) operate
from viewpoint (7).
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1.11 Gödel’s Theorems

Gödel’s work had profound implications of what could or could not be proved in mathe-
matics. Listen to the podcast from the BBC series In Our Time, http://www.bbc.co.uk/
programmes/b00dshx3. You can also find suggestions for further reading at that website,
including the Pulitzer prize winning book Gödel, Escher, Bach: An Eternal Golden Braid
by Douglas Hofstadter. Here are some questions relating to the podcast:

1. What are axioms?

2. What are theorems?

3. Where does Euclid prove that there are infinitely many primes?

4. What is the historical origin of these formal systems?

5. What is Euclid’s Elements?

6. In what ways is mathematics different from other disciplines?

7. What are non-Euclidean geometries?

8. Why were people worried about them?

9. What did Cantor prove about infinities?

10. What did David Hilbert do in 1900?

11. What is the Hilbert program?

12. How did the view of “geometry” change?

13. What is a formalist?

14. What was Hilbert’s problem about the theory of numbers (arithmetic)?

15. What did Hilbert do in the realm of Euclidean geometry?

16. What is a complete and decidable system?

17. What role did the study of set theory play?
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18. What is a set?

19. What was Cantor trying to do with respect to sets?

20. Who laid down a formal system of axioms for sets?

21. What is Russell’s paradox?

22. What was Frege working on?

23. What is the barber paradox?

24. What did Gödel in 1931?

25. How did this destroy Hilbert’s vision?

26. What are Gödel’s two theorems (consistency, incompleteness)?

27. Why were these results disturbing?

28. Who immediately understood the significance of Gödel’s lecture?

29. What is the analogy of the game board?

30. What were Hilbert’s reactions?

31. What was Russell’s reaction?

32. What was Zermelo’s reaction?

33. What is the Bourbaki group? What was their reaction?

34. What are some of the differences between Hilbert and Gödel?

35. What did Gödel prove in general relativity theory?

36. How did Gödel prove his incompleteness theorem?

37. How much impact did this have on working mathematicians?

38. What was Hilbert’s first question?

39. What did Cantor ask?

40. What did Cohen prove?
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41. What is the Continuum Hypothesis?

42. How did Hermann Weyl feel?

43. Were doubts raised about the consistency of Zermelo-Frankl set theory, Peano arith-
metic?

44. What is the Goldbach conjecture? (Every even number the sum of two primes.)

45. What is the difference between proof and truth?

46. What is special about a fifth order polynomial equation?

47. What is the level of critical complexity?

48. Is there a Gödel theorem for Euclidean geometry?

49. What is the difference between Hilbert’s and Gödel’s view of mathematics?

50. What is the relevance of Gödel’s Theorems to computers and computer proof?

51. What is Turing’s halting problem?

52. What were the impacts on other disciplines?

53. What was the reaction of Freeman Dyson?

54. How do you feel about mathematics after hearing about what Gödel did?
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2 Points, Lines, and Incidence

2.1 Incidence Axioms

Axioms for points and lines often use the relation incidence, as in “point A is incident to
line L.” But the axioms soon imply that we can regard lines as certain sets of points, so
that is what we will do for now. Here is an axiom for points and lines.

Axiom 2.1.1 (SMSG Postulate 1)

Given any two different points, there is exactly one line which contains both of them.

Notation: The line containing the points P and Q is denoted
←→
PQ.

We already have a simple theorem.

Theorem 2.1.2 (SMSG Theorem 3-1)

Two different lines intersect in at most one point.

Note: To say that the lines intersect is really to say they have a nonempty intersection.

Problem 2.1.3 Prove this theorem.
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2.2 Geometrical Worlds

Problem 2.2.1 Here are some geometrical “worlds.” In each case we make certain choices
on what we will call POINTS and LINES. (I capitalize these words as a reminder these may
not appear to be our “familiar” points, lines and planes.) In each case you should begin
thinking about what properties hold for our choice of POINTS and LINES. In particular,

1. Is it true or false that given any two different POINTS P and Q, there is exactly one
LINE ` that contains both of them?

2. Is it true or false that for any given LINE ` and any given POINT P not on that LINE,
there is a unique LINE m containing P that does not share any POINT with `?

It would be helpful for experimentation to have some spherical surfaces to draw on, such as
(very smooth) tennis balls, ping-pong balls, oranges or Lénárt spheres.
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2.2.1 The Analytical Euclidean Plane: E2

POINTS: Ordered pairs (x, y) of real numbers; i.e., elements of R2.

LINES: Sets of points that satisfy an equation of the form ax+ by + c = 0, where a, b and
c are real numbers; and further a and b are not both zero.
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2.2.2 The Rational Plane

POINTS: Ordered pairs (x, y) of rational numbers; i.e., elements of Q2.

LINES: Sets of POINTS that satisfy an equation of the form ax + by + c = 0, where a, b
and c are rational numbers; and further a and b are not both zero.
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2.2.3 The Integer Plane

??

POINTS: Ordered pairs (x, y) of integers; i.e., elements of Z2.

LINES: Nonempty sets of POINTS that satisfy an equation of the form ax + by + c = 0,
where a, b and c are integers; and further a and b are not both zero.
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2.2.4 The Sphere: S2

POINTS: All points in R3 that lie on a sphere of radius 1 centered at the origin.

LINES: Great circles on the sphere (circles that divide the sphere into two equal hemi-
spheres).
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2.2.5 The Paired Sphere

(Note: This is not a standard name.)

POINTS: All pairs of points in R3 that lie on a sphere of radius 1 centered at the origin
and are opposite each other.

LINES: Great circles on the sphere.
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2.2.6 The Punctured Sphere

(Note: This is not a standard name.)

POINTS: All points in R3 that lie on a sphere of radius 1 centered at the origin, with the
exception of the point N = (0, 0, 1) (the “North Pole”), which is excluded.

LINES: Circles on the sphere that pass through N , excluding the point N itself.

N
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2.2.7 The “Inside-Out” Plane

(Note: This is not a standard name.)

POINTS: All points in R2, but not including the point O = (0, 0), together with an
additional “artificial” POINT not in R2, which we will call S.

LINES: Circles passing through O but excluding the point O itself, together with ordinary
lines passing through O (but not including O) together with the artificial POINT S.
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2.2.8 The Open Hemisphere

POINTS: All points in R3 that lie on the upper hemisphere of radius 1 centered at the
origin and have strictly positive z-coordinate. (So the “equator” of points with z-coordinate
equaling 0 is excluded.)

LINES: Semicircles (not including endpoints) on this hemisphere that are perpendicular to
the “equator”.
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2.2.9 The Klein Disk

POINTS: All points in R2 that lie strictly in the interior of the circle of radius 1 centered
at the origin.

LINES: Chords of the circle, excluding endpoints.
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2.2.10 The Poincaré Disk: H2

POINTS: All points in R2 that lie strictly in the interior of the circle C of radius 1 centered
at the origin.

LINES: Points of H2 that lie on circles intersecting C in right angles, as well as diameters
(excluding endpoints) of C.
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2.2.11 The Upper Half Plane

POINTS: All points (x, y) in R2 for which y > 0.

LINES: Points of the upper half plane that lie on circles intersecting the x-axis in right
angles, or that lie on vertical lines.
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2.2.12 The Projective Plane: P2

POINTS: All ordinary lines in R3 that pass through the origin.

LINES: All ordinary planes in R3 that pass through the origin.
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2.2.13 The Affine Plane: A2

POINTS: All ordinary nonhorizontal lines in R3 that pass through the origin.

LINES: All ordinary nonhorizontal planes in R3 that pass through the origin.
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2.2.14 The First Vector Plane

(Note: This is not a standard name.)

POINTS: Ordered triples (x, y, z) of real numbers for which x, y, and z are not all zero.
Also, (x1, y1, z1) and (x2, y2, z2) are regarded as equivalent (the same point) if one triple is a
nonzero multiple of the other.

LINES: Ordered triples (a, b, c) of real numbers for which a, b, and c are not all zero. Also,
(a1, b1, c1) and (a2, b2, c2) are regarded as equivalent (the same line) if one triple is a nonzero
multiple of the other.

A POINT (x, y, z) is regarded as being on a LINE (a, b, c) if ax+ by + cz = 0.
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2.2.15 The Second Vector Plane

(Note: This is not a standard name.)

POINTS: Ordered triples (x, y, z) of real numbers for which z is nonzero. Also, (x1, y1, z1)
and (x2, y2, z2) are regarded as equivalent (the same point) if one triple is a nonzero multiple
of the other.

LINES: Ordered triples (a, b, c) of real numbers for which a and b are not both zero. Also,
(a1, b1, c1) and (a2, b2, c2) are regarded as equivalent (the same line) if one triple is a nonzero
multiple of the other.

A POINT (x, y, z) is regarded as being on a LINE (a, b, c) if ax+ by + cz = 0.
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2.2.16 The Third Vector Plane

(Note: This is not a standard name.)

POINTS: Ordered triples (x, y, z) of real numbers for which x, y, and z are not all zero.
Also, (x1, y1, z1) and (x2, y2, z2) are regarded as equivalent (the same point) if one triple is a
positive multiple of the other.

LINES: Ordered triples (a, b, c) of real numbers for which a, b, and c are not all zero. Also,
(a1, b1, c1) and (a2, b2, c2) are regarded as equivalent (the same line) if one triple is a nonzero
multiple of the other.

A POINT (x, y, z) is regarded as being on a LINE (a, b, c) if ax+ by + cz = 0.
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2.2.17 The Ray Plane

(Note: This is not a standard name.)

POINTS: All ordinary rays in R3 that start at the origin.

LINES: All ordinary planes in R3 that pass through the origin.
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2.2.18 Analytical Euclidean Space: E3

POINTS: Ordered triples (x, y, z) of real numbers.

LINES: Sets of points of the form. . .

PLANES: Sets of points that satisfy an equation of the form ax + by + cz + d = 0, where
a, b, c and d are real numbers; and further a, b and c are not all zero.
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2.2.19 Analytical Euclidean 4-Space: E4

POINTS:

LINES:

PLANES:
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2.2.20 Analytical Euclidean n-Space: En

Here, assume n is an integer greater than 3.

POINTS:

LINES:

PLANES:
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2.2.21 Finite Projective Plane Represented by a Field

POINTS:

Let F be a finite field of order q. (For example, we may take F to be the integers mod p
where p is a prime.) POINTS are triples of the form (x, y, z) where each of x, y, and z are
in F, not all of them are zero, and two points are considered equivalent if one is a nonzero
multiple of the other.

LINES:

LINES are triples of the form (a, b, c) where each of a, b, and c are in F, not all of them are
zero, and two lines are considered equivalent if one is a nonzero multiple of the other.

A POINT (x, y, z) is regarded as being on a LINE (a, b, c) if ax+ by + cz = 0.
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2.2.22 Finite Affine Plane Represented by a Field

POINTS:

Let F be a finite field of order q. (For example, we may take F to be the integers mod p
where p is a prime.) POINTS are triples of the form (x, y, z) where each of x, y, and z are
in F, z is not zero, and two points are considered equivalent if one is a nonzero multiple of
the other.

LINES:

LINES are triples of the form (a, b, c) where each of a, b, and c are in F, not both a and b
are zero, and two lines are considered equivalent if one is a nonzero multiple of the other.

A POINT (x, y, z) is regarded as being on a LINE (a, b, c) if ax+ by + cz = 0.
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2.3 Relationships Among These Models

Problem 2.3.1 Begin thinking about the previous set of models, using your general knowl-
edge of geometry. How are they related? Which ones are isomorphic to each other?
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2.4 The Analytical Model

The analytical model E2 for planar Euclidean geometry assigns the following meanings to
points and lines: A point is an ordered pair (x, y) of real numbers. A line is a set of points
satisfying an equation of the form ax+ by = c, where a and b are not both zero.

Problem 2.4.1 Why do we want to prohibit a and b from both being zero in the equation
for lines? Is there any problem with c being zero?

We will say that this line is represented by an equation in standard form.

Note that if we multiply an equation in standard form by a nonzero constant, then we get an-
other equation in standard form that represents exactly the same line. So the representation
of the line is not unique.

Problem 2.4.2 For each of the following pairs of points, find the line containing them.

1. (1, 3) and (3,−8).

2. (1, 3) and (3, 3).

3. (1, 3) and (1,−8).

Problem 2.4.3

1. What is the point-slope form of a line? Why is this name used? Can every line be
expressed in this form?

2. What is the slope-intercept form of a line? Why is this name used? Can every line be
expressed in this form?

Problem 2.4.4 Prove that points and lines in E2 (as defined above) satisfy Axiom 2.1.1.
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Note that in order to do the previous problem, you need to prove two things: (1) Given any
two different points, there is at least one line containing both of them; and (2) Given any
two different points, there is no more than one line containing both of them.

Here is another formula for an equation in standard form of a line containing two given
points.

Theorem 2.4.5

An equation of the line containing different points (x1, y1) and (x2, y2) is

(y1 − y2)x+ (x2 − x1)y = x2y1 − x1y2.

Perhaps we should call this the point-point form of the line! How could we discover this
formula?

Problem 2.4.6 Verify that this is the equation of a line. Where do you use the assumption
that the two points are different?

Problem 2.4.7 Verify that each of the two points (x1, y1) and (x2, y2) satisfies the equation.

The problem above shows that there is at least one line containing two given different points.

Problem 2.4.8 Derive this formula by trying to solve the following two equations simulta-
neously for a, b and c, assuming that a and b are not both zero:

ax1 + by1 = c
ax2 + by2 = c

Problem 2.4.9 Explain how you can conclude from the previous problem that Axiom 2.1.1
holds for E2.

Problem 2.4.10 Use the formula to solve Problem 2.4.2.
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2.5 Determinants

Definition 2.5.1 The following are formulas for determinants of arrays or matrices of num-
bers. We won’t say more about determinants right now, but just learn the formulas:

det

[
a b
c d

]
= ad− bc.

det

 a b c
d e f
g h i

 = (aei+ bfg + cdh)− (afh+ bdi+ ceg).

Two other equivalent formulas for 3× 3 matrices are:

det

 a b c
d e f
g h i

 = a det

[
e f
h i

]
− b det

[
d f
g i

]
+ c det

[
d e
g h

]
.

det

 a b c
d e f
g h i

 = a det

[
e f
h i

]
− d det

[
b c
h i

]
+ g det

[
b c
e f

]
.
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det


a b c d
e f g h
i j k `
m n o p

 =

a det

 f g h
j k `
n o p

− b det

 e g h
i j `
m o p

+ c det

 e f h
i j `
m n p

− d det

 e f g
i j k
m n o

 .

Another equivalent formula is:

det


a b c d
e f g h
i j k `
m n o p

 =

a det

 f g h
j k `
n o p

− e det

 b c d
j k `
n o p

+ i det

 b c d
f g h
n o p

−m det

 b c d
f g h
j k `

 .

Problem 2.5.2 Calculate the following determinants:

1.

det

[
−1 2

3 −4

]

2.

det

 0 1 2
−1 4 3
−2 0 5
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3.

det


−1 1 2 −3

0 −2 4 5
3 0 0 −4
2 6 10 −7
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2.6 Equations of Lines via Determinants

Determinants can be used to express concisely the equation of a line determined by two
points:

Theorem 2.6.1

An equation of the line containing the distinct points (x1, y1) and (x2, y2) is

det

 x x1 x2
y y1 y2
1 1 1

 = 0.

Problem 2.6.2 Show that above statement is correct.

Problem 2.6.3 Use this formula to solve Problem 2.4.2.
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2.7 Testing Collinearity

Theorem 2.7.1

Three points (x1, y1), (x2, y2) and (x3, y3) are collinear (are contained in a common
line) if and only if

det

 x1 x2 x3
y1 y2 y3
1 1 1

 = 0.

Problem 2.7.2 Prove this statement. Suggestion: You might have to consider the special
case that all three points are identical.

Problem 2.7.3 Use this formula to show that the points A = (1, 2), B = (1, 5) and C =
(2,−4) are not collinear.

Problem 2.7.4 Use this formula to show that the points A = (1, 2), B = (2,−4) and
C = (3,−10) are collinear.

Problem 2.7.5 If you have taken a course in matrix algebra, use what you have learned
about matrices and independence of vectors to make sense of this theorem, thinking about
the columns as vectors in three-dimensional space.

Problem 2.7.6 If a given triple of points is not collinear, then the determinant above is
nonzero. What could be the geometric meaning of this number provided by the determinant?
Try lots of examples and make a conjecture. Can you prove it?
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2.8 Intersections of Lines

From a previous theorem we know that if two different lines intersect, then they intersect in
exactly one point. Given two different lines in E2, how can we compute the coordinates of
that point? One method is to use Cramer’s Rule:

Theorem 2.8.1

If two different lines a1x + b1y = c1 and a2x + b2y = c2 intersect, then their point of
intersection is given by:

x =

det

[
c1 b1
c2 b2

]

det

[
a1 b1
a2 b2

] , y =

det

[
a1 c1
a2 c2

]

det

[
a1 b1
a2 b2

] .

Problem 2.8.2 Prove the above statement. Suggestion: Use matrix multiplication.

Reminder on multiplying matrices. If A and B are matrices, with A having the same number
of columns as A has rows, then you can compute AB. (A special case of this is when A is
an ` ×m matrix, and B is an m × 1 matrix.) If A is ` ×m and B is m × n then C = AB
is `× n. The entry in row i, column j of C will be the inner product or dot product of row
i of A and column j of B. Here is a mnemonic to help you remember this, illustrated with
an example. To visualize the calculation:[

0 6 −1
2 −4 7

]  1 −2
−3 4

5 0

 =

[
−23 24

49 −20

]

Arrange them this way:
1 −2
−3 4

5 0
0 6 −1 −23 24
2 −4 7 49 −20
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This theorem implies that if you have representations of two lines, and the two representations
are not positive multiples of each other, then they cannot have more than one point in
common, and hence cannot be the same line. This result, together with Problems 2.4.6 and
2.4.7, shows that there is one and only one line containing two given different points, and so
confirms that the points and line of the analytical model satisfy Axiom 2.1.1.

Problem 2.8.3 What happens when you try to apply this formula to two lines that do not
intersect, or to two equations describing the same line?

Problem 2.8.4 Practice using this formula with some examples of your own.

Problem 2.8.5 Try to make sense of the statement of the following theorem.

Theorem 2.8.6

If two different lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 intersect, then their
point of intersection is given by:

det

 a b c
a1 b1 c1
a2 b2 c2

 = 0.

Problem 2.8.7 Practice using this formula with some examples of your own.

Definition 2.8.8 Two or more lines are concurrent if they share a common point.

Theorem 2.8.9
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The three lines given by a1x+ b1y+ c1 = 0, a2x+ b2y+ c2 = 0, and a3x+ b3y+ c3 = 0
are concurrent if and only if

det

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 = 0.

Problem 2.8.10 Prove this theorem.

Problem 2.8.11 Practice using this formula with some examples of your own.
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2.9 Parametric Equations of Lines

Here is another useful description of a line determined by two points, said to be in parametric
form.

Theorem 2.9.1

If (x1, y1) and (x2, y2) are two distinct points, then the line containing them is the set
of points {(x1, y1) + t(u, v) : t ∈ R}, where u = x2 − x1 and v = y2 − y1.

We will call (u, v) a direction vector for the line.

For example, if we have the points (−2, 1) and (1, 5), then the parametric equation of the
line containing them is (−2, 1) + t(3, 4).

Problem 2.9.2 Prove that the description given in the above theorem is correct; i.e., prove
that this set is exactly the same as the set of points on the line containing the original two
points, as given by the earlier formula in Theorem 2.4.5.

Thus any line can be expressed as a set of points of the form {(x1, y1) + t(u, v) : p ∈ E}, u
and v not both zero. It is helpful to think of (u, v) as a vector, specifying a particular change
in x and y values. Parametric equations of lines are especially useful when describing lines
in E3 (and higher dimensions!), and also lend themselves to computations for animations.

Note that it is easy to convert a line represented in slope-intercept form into a representation
in parametric form. For example, if the line is given by y = 3x− 7, then let x = t:

(x, y) = (x, 3x− 7)
= (t, 3t− 7)
= (0,−7) + t(1, 3).

Problem 2.9.3 What point on the line do you get when t = 0? When t = 1? When
t = 1/2? When t = 1/3? When t = 2/3? When t = 2? When t = −1? When t = −1/2?
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When t = −4/3? Try plotting these points and explain their geometric relationship to the
original two points.

Problem 2.9.4 Use the formula to solve Problem 2.4.2.

Problem 2.9.5 If you have taken a course in matrix algebra, use what you have learned
about Gaussian elimination applied to solving one equation in two variables to see the
connection with obtaining a parametric equation of a line.

The parametric form of a line (or other curve) is sometimes useful to simulate motion. You
can let the parameter t represent time and use it to locate and move an object along a line.

62



2.10 Stereographic Projection

The easiest way to explain some relationships among some of the “geometric worlds” we
have encountered is to define a mapping from the punctured sphere to the analytical plane
E2 in the following way. Let P be the plane given by the equation z = 0; i.e., the plane
containing the “equator” of the unit sphere. For each point A = (x, y, z) 6= (0, 0, 1), consider

the ray
−→
NA in E3. Let B = (p, q, 0) be the point where this ray intersects P .

Then you can prove that
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p =
x

1− z

q =
y

1− z

Problem 2.10.1 Prove the above formulas.

We use these formulas to define the map φ : (x, y, z)→ (p, q) from the punctured sphere to
E2. This map is called stereographic projection.

The inverse φ−1 : (p, q)→ (x, y, z) is given by

x =
2p

p2 + q2 + 1

y =
2q

p2 + q2 + 1

z =
p2 + q2 − 1

p2 + q2 + 1

Problem 2.10.2 Prove that (x, y, z) given by the above formulas is a point on the unit
sphere centered at the origin.

Problem 2.10.3 Prove that φ−1 is the inverse of φ by showing that φ ◦φ−1 and φ−1 ◦φ are
each the identify map.

Problem 2.10.4 Now we know that φmaps the punctured sphere bijectively onto E2. What
do LINES in the punctured sphere map to?
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Problem 2.10.5 Conversely, suppose you are given an ordinary line ` in E2. Regard this
line as sitting in P . What does φ−1(`) look like?

Problem 2.10.6 We now know that φ maps circles on the unit sphere through N (but not
including N) to ordinary lines in E2, and conversely that φ−1 maps ordinary lines in E2 to
circles on the unit sphere through N (but not including N). Let C be a circle on the unit
sphere that does not pass through N . Describe φ(C). Conversely, let C ′ be a circle in the
plane. Describe φ−1(C ′).

Problem 2.10.7 Study the construction of an astrolabe, as described, for example, in the
Cambridge Illustrated History of Astronomy by Michael Hoskin.
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2.11 Relationships Among the Geometrical Worlds

We saw that stereographic projection maps circles on the sphere to circles and lines in the
plane, and vice versa. It turns out that stereographic projection preserves angles between
curves. In particular, two curves intersect at right angles on the sphere if and only if their
images intersect at right angles in the plane. Using these facts, we can establish that some
of the models presented in Section 2.2 are isomorphic to each other.

Problem 2.11.1 Prove that the following models are all isomorphic to each other: The
analytical Euclidean plane 2.2.1, the punctured sphere 2.2.6, the “inside-out” plane 2.2.7,
the affine plane, 2.2.13, and the second vector plane 2.2.15.

Problem 2.11.2 Prove that the following models are all isomorphic to each other: The
paired sphere 2.2.5, the projective plane 2.2.12, and the first vector plane 2.2.14.

Problem 2.11.3 Prove that the following models are all isomorphic to each other: the open
hemisphere 2.2.8, the Klein disk 2.2.9, the Poincaré disk 2.2.10, and the upper half plane
2.2.11.

Problem 2.11.4 Prove that the following models are all isomorphic to each other: the
sphere 2.2.4, the third vector plane 2.2.16, and the ray plane 2.2.17.

Problem 2.11.5 Think about how one can regard the Analytical Euclidean Plane 2.2.1 as
sitting within the Projective Plane 2.2.12. (This helps make sense of “points at infinity” and
a “line at infinity”.)
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3 Coordinates and Distance

3.1 The SMSG Postulates and Theorems

The SMSG axioms are not independent, but they are very convenient for more quickly devel-
oping Euclidean geometry. Here are the postulates and associated definitions and theorems
for the concepts of coordinates on a line, and distance, in the Euclidean plane.

1. Postulate 2. (The Distance Postulate.) To every pair of different points there corre-
sponds a unique positive number.

2. Definition. The distance between two points is the positive number given by the
Distance Postulate. If the points are P and Q, then the distance is denoted by PQ.

3. Postulate 3. (The Ruler Postulate.) The points of a line can be placed in correspon-
dence with the real numbers in such a way that

(a) To every point of the line there corresponds exactly one real number,

(b) To every real number there corresponds exactly one point of the line, and

(c) The distance between two points is the absolute value of the difference of the
corresponding numbers.

4. Definition. A correspondence of the sort described in Postulate 3 is called a coordinate
system for the line. The number corresponding to a given point is called the coordinate
of the point.

5. Postulate 4. (The Ruler Placement Postulate.) Given two points P and Q of a line,
the coordinate system can be chosen in such a way that the coordinate of P is zero
and the coordinate of Q is positive.

6. Definition. B is between A and C if (1) A, B and C are distinct points on the same
line and (2) AB +BC = AC.

7. Theorem 2-1. Let A, B, C be three points of a line, with coordinates x, y, z. If
x < y < z, then B is between A and C.

8. Theorem 2-2. Of any three different points on the same line, one is between the other
two.
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9. Theorem 2-3. Of three different points on the same line, only one is between the other
two.

10. Definitions. For any two points A and B the segment AB is the set whose points are
A and B, together with all points that are between A and B. The points A and B are
called the end-points of AB.

11. Definition. The distance AB is called the length of the segment AB.

12. Definition. Let A and B be points of a line L. The ray
−→
AB is the set which is the

union of (1) the segment AB and (2) the set of all points C for which it is true that B

is between A and C. The point A is called the end-point of
−→
AB.

13. Definition. If A is between B and C, then
−→
AB and

−→
AC are called opposite rays.

14. Theorem 2-4. (The Point Plotting Theorem.) Let
−→
AB be a ray, and let x be a positive

number. Then there is exactly one point P of
−→
AB such that AP = x.

15. Definition. A point B is called a midpoint of a segment AC if B is between A and C,
and AB = BC.

16. Theorem 2-5. Every segment has exactly one midpoint.

17. Definition. The midpoint of a segment is said to bisect the segment. More generally,
any figure whose intersection with a segment is the midpoint of the segment is said to
bisect the segment.

Note that definitions are not axioms or undefined terms. Rather, they can be thought of
as convenient collections of conditions, making it easier to use the term, say, line segment,
rather than constantly repeating the array of conditions that designate a set of points as a
line segment every time we want to talk about one.

Problem 3.1.1 Using only the SMSG postulates above, together with the earlier Ax-
iom 2.1.1 and Theorem 2.1.2 if needed, prove the above theorems.
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3.2 The Analytical Models E2 and E3

We can show that the analytical models E2 and E3 satisfy the above postulates, once we
make a definition.

Definition 3.2.1 The distance d(P,Q) between two points P = (x1, y1) and Q = (x2, y2) is
given by

d((x1, y1), (x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2.

Problem 3.2.2 Assume we know that the Pythagorean Theorem holds in E2. Consider a
third point C = (x1, y2) to derive the formula for the distance between the points A = (x1, y1)
and B = (x2, y2).

Problem 3.2.3 Assume we know that two lines L1 and L2 with respective direction vectors
(u1, v1) and (u2, v2) are perpendicular if and only if (u2, v2) is a nonzero multiple of (v1,−u1).
Consider any right triangle ∆ABC with right angle at A. Then there is a direction vector
(u, v) and numbers s and t such that B = A + s(u, v) and C = A + t(v,−u). Use this,
together with the distance formula, to prove that the Pythagorean Theorem holds.

Problem 3.2.4 Derive the formula for the distance between two points A = (x1, y1, z1) and
B = (x2, y2, z2) in E3.

d((x1, y1, z1), (x2, y2, z2)) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.
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Recall that the parametric form of a line in E2 or E3 (and in general in En) determined by
two points A and B is given by {A+ t(B − A) : t ∈ R}.

Problem 3.2.5 Explain how the above definition of distance, together with the the para-
metric form of lines in the analytical model E2 and E3 enables us to confirm that SMSG
Postulates 2–4 are satisfied by these models. Suggestion: First rescale the vector (u, v) in
the parametric form of a line by dividing it by

√
u2 + v2. The resulting vector (u′, v′) will

then be a unit vector; i.e., will have length 1.

For example, if you begin with the parametric equation (−2, 1) + t(3, 4), we compute√
32 + 42 = 5. Dividing (3, 4) through by this number, we have a new parametric equa-

tion for the same line, (−2, 1) + t(3
5
, 4
5
), where now the direction vector (3

5
, 4
5
) has length

1.

Problem 3.2.6 Derive the midpoint formula for points A = (x1, y1) and B = (x2, y2) in E2.

midpoint of AB =
(
x1 + x2

2
,
y1 + y2

2

)
.

Problem 3.2.7 Derive the midpoint formula for points A = (x1, y1, z1) and B = (x2, y2, z2)
in E3.

midpoint of AB =
(
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
.
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3.3 Explorations on Distance

Use your general mathematical knowledge to think about the problems in this section.

Problem 3.3.1 What is the distance between two points in a (physical) field?

Problem 3.3.2 What is the distance between two locations in town? Does your answer
change if there are any one-way streets? Does your answer change if you are walking, riding
a bicycle, or driving a car?

Problem 3.3.3 What is the distance between two cities in the state?

Problem 3.3.4 What is the distance between two cities on the earth?

Problem 3.3.5 What is the distance traveled by a thrown rock? What is the distance along
a curve in the shape of the St. Louis arch?

Problem 3.3.6 Explain what the arclength formula in calculus has to do with the formula
for the distance between two points. What happens when you apply the calculus arclength
formula to a portion of a linear function between two given points? Calculate the length of
a segment of a catenary curve, given by

y =
a

2
(e

x
a + e

−x
a ),

between x = x1 and x = x2.

Problem 3.3.7 What is the distance from the earth to the moon?

Problem 3.3.8 What is the distance between a speaker mounted on a wall of a room and
the stereo system on the opposite wall?
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Problem 3.3.9 What is the distance between two computers on the internet?

Problem 3.3.10 What does distance have to do with error-correcting codes?

Problem 3.3.11 Given a graph (network) with weights on the edges (e.g., this might rep-
resent a road network with distances between towns).

1. What is the most efficient way to find the shortest route between two given nodes?

2. What is the most efficient way to find a minimum weight subset of the edges that is a
connected subgraph containing all the nodes?

Problem 3.3.12 Think about common (and uncommon!) notions of distance. What prop-
erties do we expect something called “distance” to satisfy?

Problem 3.3.13 Given two points, find the set of all points equidistant from both of them.

Problem 3.3.14 Given three points, find the set of all points equidistant from all three of
them.

Problem 3.3.15 Given a finite set of points (“schools”), divide the plane up into regions
(“school districts”) according to which school is closest.

Problem 3.3.16 Given three points, find a point so that the sum of the distances to the
three points is minimized.

Problem 3.3.17 Given an angle formed by two rays, find the set of all points equidistant
from both rays.

Problem 3.3.18 Given a triangle, find the set of all points equidistant from all three sides.
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Problem 3.3.19 Given a point and a line, find the set of all points equidistant from both
of them.

Problem 3.3.20 Given two points, find the set of all points so that the sum of the distances
to the two given points is a given constant c.

Problem 3.3.21 Given three points, find the shortest way to “connect them up.” You may
need to insert more points.

Problem 3.3.22 Given four points, find the shortest way to “connect them up.” Try start-
ing first with the four corners of a square.

Problem 3.3.23 A camper finds herself near (but not at) the bank of a straight river.
Describe how to construct the shortest path from her current location to her tent, given that
she wishes first to stop by the river.

If the river bank is represented by the line y = 0, her present location by the point A = (0, 2),
and her campsite by the point B = (6, 3), what is the shortest route she can take? Provide
justification. Make a good sketch. It may be helpful to use GeoGebra to experiment.

Problem 3.3.24 A camper finds herself at a point A near (but not at) the bank of a straight
river. She can run at speed v and swim at speed w. She wants to get to a particular point
B on the opposite bank of the river. So she runs to a point C on the near river bank and
then swims from C to B. The water in the river is moving so slowly that during her swim
you can neglect any movement downstream due to river flow. How can you determine the
location of the point C that will minimize her total time?

Problem 3.3.25 A camper finds herself in the angle formed by the edge of a meadow and
the bank of a river. Her tent is also in this angle. Describe how to construct the shortest
path from her current location to her tent, given that she wishes to stop by the river on the
way. Now describe how to construct the shortest path from her current location to her tent,
given that she wishes first to stop by the river, and then after that stop by the meadow, on
the way to her tent.
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Try this specific example: The bank of the river is given by line y = 0. The edge of the
meadow is given by the line y = x. The camper is currently at the point (9, 6), and the tent
is at the point (6, 3). What is the shortest path from her current location to the river to the
meadow to the tent?

Problem 3.3.26 Consider the set of all points P (x, y) such that x2− 2x+ y2− 4y− 4 = 0.
What shape is this set? Provide justification. Why does this make sense? Find a better
form of the equation that more clearly represents this set.

Problem 3.3.27 Let L be the line defined by the equation y = 1, and let A = (4, 3).
Consider the set of all points P = (x, y) such that the distance from P to L equals the
distance from P to A. Find an equation to describe this set of points, simplifying it as much
as possible. Then use GeoGebra or a similar program to make a good sketch. What kind of
shape do you get?

Problem 3.3.28 Let A = (−2, 0) and B = (2, 0). Consider the set of all points P = (x, y)
such that the sum of the distances PA+PB equals 6. Find an equation to describe this set
of points, simplifying it as much as possible—in particular, figure out how to get rid of any
square roots. Then use GeoGebra or a similar program to make a good sketch. What kind
of shape do you get?

Problem 3.3.29 Let A = (−3, 0) and B = (3, 0). Consider the set of all points P = (x, y)
such that the difference of the distances |PA− PB| equals 2. Find an equation to describe
this set of points, simplifying it as much as possible—in particular, figure out how to get rid
of any square roots. Then use GeoGebra or a similar program to make a good sketch. What
kind of shape do you get?

Problem 3.3.30 Explore the consequences of defining the distance AB between the points
A = (x1, y1) and (x2, y2) in E2 to be

AB = |(x2 − x1)|+ |(y2 − y1)|.

Problem 3.3.31 Explore the consequences of defining the distance AB between the points
A = (x1, y1) and (x2, y2) in E2 to be

AB = max{|(x2 − x1)|, |(y2 − y1)|}.
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3.4 What is the Distance to the Horizon?

It was the first time that Poole had seen a genuine horizon since he had come to
Star City, and it was not quite as far away as he had expected. . . . He used to
be good at mental arithmetic—a rare achievement even in his time, and probably
much rarer now. The formula to give the horizon distance was a simple one: the
square root of twice your height times the radius—the sort of thing you never
forgot, even if you wanted to. . .

—Arthur C. Clarke, 3001, Ballantine Books, New York, 1997, page 71

Problem 3.4.1 In the above passage, Frank Poole uses a formula to determine the distance
to the horizon given his height above the ground.

1. Use algebraic notation to express the formula Poole is using.

2. Beginning with the diagram below, derive your own formula. You will need to add
some more elements to the diagram.

3. Compare your formula to Poole’s; you will find that they do not match. How are they
different?

4. When I was a boy it was possible to see the Atlantic Ocean from the peak of Mt. Wash-
ington in New Hampshire. This mountain is 6288 feet high. How far away is the
horizon? Express your answer in miles. Assume that the radius of the Earth is 4000
miles. Use both your formula and Poole’s formula and comment on the results. Why
does Poole’s formula work so well, even though it is not correct?
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3.5 The Snowflake Curve

Begin with an equilateral triangle. Let’s assume that each side of the triangle has length
one. Remove the middle third of each line segment and replace it with two sides of an
“outward-pointing” equilateral triangle of side length 1/3. Now you have a six-pointed star
formed from 12 line segments of length 1/3. Replace the middle third of each of these line
segments with two sides of outward equilateral triangle of side length 1/9. Now you have a
star-shaped figure with 48 sides. Continue to repeat this process, and the figure will converge
to the “Snowflake Curve.” Shown below are the first three stages in the construction of the
Snowflake Curve.

Problem 3.5.1

1. In the limit, what is the length of the Snowflake Curve?

2. In the limit, what is the area enclosed by the Snowflake Curve?
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Figure 1: Constructing the Snowflake Curve
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3.6 The Longimeter

How can we measure the lengths of curves in “real life?” There are devices consisting of
wheels with some sort of dial that you can roll over a map to estimate distances, and larger
versions that you can roll in front of you on, e.g., paths, to measure distance (what are these
things called?). You can also estimate the distance that you walk by wearing a pedometer.

Here is another way to estimate the length of a curve on a map, using a simple device called
a longimeter. On a transparent sheet of plastic create a square grid, each square having
side length of, say 1 mm. Superimpose this grid your curve in three different orientations,
differing one from the other by a rotation of 30◦. In each of the three cases, count how
many squares the curve passes through. Let the sum of these three numbers be S. Then an
estimate of the length of the curve is S/3.82 mm.

In the example below, I rotated the figure rather than the grid. Each square has side length
0.25 in. The sum S is 16 + 16 + 15 = 47, so the estimate of the length of the curve is
47/3.82 ≈ 12.30 units of length 0.25 in, or 3.07 in.

Figure 2: Using a Longimeter

Problem 3.6.1 Read the reference below and write up an explanation of why this method
works. In particular, where does the number 3.82 come from?

78



Reference: H. Steinhaus, Mathematical Snapshots, Oxford University Press, New York, 1989,
pp. 105–107.
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3.7 Fractals

The notion of “length” of certain naturally occurring objects can, however, be tricky, and can
lead one into the notion of fractals. The following quote comes from a book by Mandelbrot:

To introduce a first category of fractals, namely curves whose fractal dimension
is greater than 1, consider a stretch of coastline. It is evident that its length is
at least equal to the distance measured along a straight line between its beginning
and its end. However, the typical coastline is irregular and winding, and there is
no question it is much longer than the straight line between its end points.

There are various ways of evaluating its length more accurately. . . The result is
most peculiar: coastline length turns out to be an elusive notion that slips between
the fingers of one who wants to grasp it. All measurement methods ultimately
lead to the conclusion that the typical coastline’s length is very large and so ill
determined that it is best considered infinite. . . .

Set dividers to a prescribed opening ε, to be called the yardstick length, and walk
these dividers along the coastline, each new step starting where the previous step
leaves off. The number of steps multiplied by ε is an approximate length L(ε). As
the dividers’ opening becomes smaller and smaller, and as we repeat the operation,
we have been taught to expect L(ε) to settle rapidly to a well-defined value called
the true length. But in fact what we expect does not happen. In the typical case,
the observed L(ε) tends to increase without limit.

The reason for this behavior is obvious: When a bay or peninsula noticed on
a map scaled to 1/100, 000 is reexamined on a map at 1/10, 000, subbays and
subpeninsulas become visible. On a 1/1, 000 scale map, sub-subbays and sub-
subpeninsulas appear, and so forth. Each adds to the measured length.

—B.B. Mandelbrot, “How Long is the Coast of Britain,”The Fractal Geometry
of Nature, W.H. Freeman and Company, New York, 1983, Chapter 5, p. 25.
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3.8 The Triangle Inequality in E2

Problem 3.8.1 For two ordered pairs A = (x1, y1) and B = (x2, y2), define

A ·B = x1x2 + y1y2

For an ordered pair A = (x1, y1), define

‖A‖ =
√
x21 + y21 =

√
A · A

Prove the following theorem directly from the definitions:

A ·B ≤ ‖A‖‖B‖

Problem 3.8.2 Prove:

(A+B) · (A+B) = ‖A‖2 + 2A ·B + ‖B‖2
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Problem 3.8.3 Observe the obvious fact that

AB = ‖B − A‖ =
√

(B − A) · (B − A)

Prove the Triangle Inequality holds for any three points A,B,C:

AC ≤ AB +BC

Suggestion: First prove that

‖D + E‖ ≤ ‖D‖+ ‖E‖

Then let D = B − A and E = C −B.

Problem 3.8.4 Check that all of the problems in this section can be generalized to E3 as
well.
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4 Lines and Planes in Space

4.1 The SMSG Postulates and Theorems

1. Definition. The set of all points is called space.

2. Definition. A set of points is collinear if there is a line which contains all the points of
the set.

3. Definition. A set of points is coplanar if there is a plane which contains all the points
of the set.

4. Postulate 5.

(a) Every plane contains at least three non-collinear points.

(b) Space contains at least four non-coplanar points.

5. Theorem 3-1. Two different lines intersect in at most one point.

6. Postulate 6. If two points lie in a plane, then the line containing these points lies in
the same plane.

7. Theorem 3-2. If a line intersects a plane not containing it, then the intersection is a
single point.

8. Postulate 7. Any three points lie in at least one plane, and any three non-collinear
points lie in exactly one plane. More briefly, any three points are coplanar, and any
three non-collinear points determine a plane.

9. Theorem 3-3. Given a line and a point not on the line, there is exactly one plane
containing both of them.

10. Theorem 3-4. Given two intersecting lines, there is exactly one plane containing them.

11. Postulate 8. If two different planes intersect, then their intersection is a line.

Problem 4.1.1 Using only the set of SMSG postulates and theorems provided so far, prove
the above theorems.
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4.2 The Analytical Model E3

The analytical model for points, lines, and planes in space requires some definitions to assign
meanings to our terms.

Definition 4.2.1

1. A point is an ordered triple (x, y, z) of real numbers.

2. A line is a set of points of the form {(x1, y1, z1) + t(u, v, w)} where at least one of
u, v, w is not zero. (Note that this representation is not unique.) The vector (u, v, w)
is called a direction vector of the line.

3. A plane is a set of points of the form {(x, y, z) : ax + by + cz = d} where at least one
of a, b, c is not zero. (Note that you can multiply the equation of a plane by a nonzero
constant to get another equation of the same plane.)

4. The distance d(P,Q) between two points P = (x1, y1, z1) and Q = (x2, y2, z2) is given
by

d((x1, y1, z1), (x2, y2, z2)) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

Problem 4.2.2 Why is it important that at least one of a, b, c is not zero in the equation
of a plane?

Problem 4.2.3 Prove that, with these definitions, the analytical model satisfies SMSG
Postulates 5–8.

Theorem 4.2.4 An equation of a plane containing three non-collinear points (x1, y1, z1),
(x2, y2, z2), (x3, y3, z3) is given by
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det


x x1 x2 x3
y y1 y2 y3
z z1 z2 z3
1 1 1 1

 = 0.

Problem 4.2.5 Prove the above theorem. Practice with some examples. What happens
when you try to use this equation when the three points are collinear?

Theorem 4.2.6 Four points (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (x4, y4, z4) are coplanar
if and only if

det


x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

 = 0.

Problem 4.2.7 Prove the above theorem. Practice with some examples.

Problem 4.2.8 How can you determine the point of intersection of a line and a plane?
Practice with some examples. What happens with your procedure if the line does not
intersect the plane?

Problem 4.2.9 If you are familiar with a matrix algebra, explain how Gaussian elimination
enables you to find the line that is the intersection of two different intersecting planes.
Practice with some examples.

Problem 4.2.10 Make sense of the statement of the following theorem.
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Theorem 4.2.11 If three planes a1x + b1y + c1z + d1 = 0, a2x + b2y + c2z + d2 = 0,
a3x+ b3y + c3z + d3 = 0 have exactly one point in common, then

det


a b c d
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

 = 0

Theorem 4.2.12 Four planes a1x + b1y + c1z + d1 = 0, a2x + b2y + c2z + d2 = 0, a3x +
b3y + c3z + d3 = 0, and a4x + b4y + c4z + d4 = 0 are concurrent (share a common point) if
and only if

det


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

 = 0
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5 Convex Sets

5.1 The SMSG Postulates and Theorems

1. Definition. A set A is called convex if for every two points P and Q or A, the entire
segment PQ lines in A.

2. Postulate 9. (The Plane Separation Postulate.) Given a line and a plane containing
it. The points of the plane that do not lie on the line form two sets such that (1) each
of the sets is convex and (2) if P is in one set and Q is in the other then the segment
PQ intersects the line.

3. Definitions. Given a line L and a plane E containing it, the two sets determined by
Postulate 9 are called half-planes, and L is called an edge of each of them. We say that
L separates E into the two half-planes. If two points P and Q or E lie in the same
half-plane, we say that they lie on the same side of L; if P lies in one of the half-planes
and Q in the other they lie on opposite sides of L.

4. Postulate 10. (The Space Separation Postulate.) The points of space that do not lie
in a given plane form two sets such that (1) each of the sets is convex and (2) if P is
one set and Q is in the other, then the segment PQ intersects the plane.

5. Definitions. The two sets determined by Postulate 10 are called half-spaces, and the
given plane is called the face of each of them.
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5.2 The Analytical Models E2 and E3

Problem 5.2.1 Assume that {(x, y) : ax+ by = c} is a line in E2. Prove that that the two
sets {(x, y) : ax + by < c} and {(x, y) : ax + by > c} satisfy SMSG Postulate 9; i.e., that
together they contain all of the points that do not lie on the line, that each of the sets is
convex, and if P is in one set and Q is in the other then the segment PQ intersects the line.

Problem 5.2.2 Assume that {(x, y, z) : ax+ by+ cz = d} is a plane in E3. Prove that that
the two sets {(x, y, z) : ax + by + cz < d} and {(x, y, z) : ax + by + cz > d} satisfy SMSG
Postulate 10; i.e., that together they contain all of the points that do not lie on the plane,
that each of the sets is convex, and if P is in one set and Q is in the other then the segment
PQ intersects the plane.
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6 Angles

6.1 The SMSG Postulates and Theorems

1. Definitions. An angle is the union of two rays which have the same end-point but
do not lie in the same line. The two rays are called the sides of the angle, and their
common end-point is called the vertex.

2. Notation. The angle which is the union of
−→
AB and

−→
AC is denoted by 6 BAC, or by

6 CAB, or simply by 6 A if it is clear which rays are meant.

3. Definitions. If A, B, and C are any three non-collinear points, then the union of the
segments AB, BC and AC is called a triangle, and is denoted by ∆ABC; the points
A, B and C are called its vertices, and the segments AB, BC and AC are called its
sides. Every triangle determines three angles; ∆ABC determines the angles 6 BAC,
6 ABC and 6 ACB, which are called the angles of ∆ABC. For short, we will often
write them simply as 6 A, 6 B, and 6 C.

4. Definitions. Let 6 BAC be an angle lying in plane E. A point P of E lines in the

interior of 6 BAC if (1) P and B are on the same side of the line
←→
AC and also (2) P

and C are on the same side of the line
←→
AB. The exterior of 6 BAC is the set of all

points of E that do not line in the interior and do not lie on the angle itself.

5. Definitions. A point lies in the interior of a triangle if it lie in the interior of each of
the angles of the triangle. A point lies in the exterior of a triangle if it lies in the plane
of the triangle but is not a point of the triangle or of its interior.

6. Postulate 11. (The Angle Measurement Postulate.) To every angle 6 BAC there cor-
responds a real number between 0 and 180.

7. Definition. The number specified by Postulate 11 is called the measure of the angle,
and written as m6 BAC.

8. Postulate 12. (The Angle Construction Postulate.) Let
−→
AB be a ray on the edge of

the half-plane H. For every number r between 0 and 180 there is exactly one ray
−→
AP ,

with P in H, such that m6 PAB = r.

9. Postulate 13. (The Angle Addition Postulate.) If D is a point in the interior of 6 BAC,
then m 6 BAC = m6 BAD + m 6 DAC.

89



10. Definition. If
−→
AB and

−→
AC are opposite rays, and

−→
AD is another ray, then 6 BAD and

6 DAC form a linear pair.

11. Definition. If the sum of the measures of two angles is 180, then the angles are called
supplementary, and each is called a supplement of the other.

12. Postulate 14. (The Supplement Postulate.) If two angles form a linear pair, then they
are supplementary.

13. Definitions. If the two angles of a linear pair have the same measure, then each of the
angles is a right angle.

14. Definition. Two intersecting sets, each of which is either a line, a ray or a segment, are
perpendicular if the two lines which contain them determine a right angle.

15. Definition. If the sum of the measures of two angles is 90, then the angles are called
complementary, and each of them is called a complement of the other.

16. Definition. An angle with measure less than 90 is called acute, and an angle with
measure greater than 90 is called obtuse.

17. Definition. Angles with the same measure are called congruent angles.

18. Theorem 4-1. If two angles are complementary, then both of them are acute.

19. Theorem 4-2. Every angle is congruent to itself.

20. Theorem 4-3. Any two right angles are congruent.

21. Theorem 4-4. If two angles are both congruent and supplementary, then each of them
is a right angle.

22. Theorem 4-5. Supplements of congruent angles are congruent.

23. Theorem 4-6. Complements of congruent angles are congruent.

24. Definition. Two angles are vertical angles if their sides form two pairs of opposite rays.

25. Theorem 4.7. Vertical angles are congruent.

26. Theorem 4-8. If two intersecting lines form one right angle, then they form four right
angles.
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Problem 6.1.1 Using only the set of SMSG postulates and theorems provided so far, prove
the above theorems.
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6.2 Radians

Suppose you have a circle of radius 1. Its circumference is C = 2πr = 2π, which is a bit
bigger than 6.2.

Problem 6.2.1 Explain why the formula for the circumference of a circle provides the
definition of π.

The measure of a central angle that cuts off a piece (intercepts an arc) of the circumference
of length 1 is called a radian. In general, the measure of an angle that intercepts an arc of
the circumference having length ` is said to have measure ` radians. Therefore, there are
2π radians around the center of a circle and we can convert back and forth between degrees
and radians by

θ(in radians) =
π

180◦
θ(in degrees)

θ(in degrees) =
180◦

π
θ(in radians)

Using radians makes many formulas look “nicer.” For example, Suppose C is a circle of
radius r. The length ` of an arc intercepted by a central angle θ is given by

` = rθ (if θ is measured in radians)

` =
π

180◦
rθ (if θ is measured in degrees)

So the radian measure of the central angle is the ratio of the length of the arc and the radius.
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Problem 6.2.2 Propose an analogous definition of the measure of a solid angle where three,
four, or more planes meet at common vertex of a polyhedron, and explain why your definition
is reasonable. Then look up the official name and definition of solid angle measure.
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6.3 Trigonometric Functions in the Analytical Model E2

A circle of radius one is called a unit circle. A unit circle with center at the origin of the
Cartesian plane is often called the unit circle. The trigonometric functions sine, cosine,
tangent, secant, cosecant, and cotangent, can be defined using the unit circle.

Let α be the radian measure of an angle. Place a ray r from the origin along the x axis. If
α ≥ 0, rotate the ray by α radians in the counterclockwise direction.

If α < 0, rotate the ray by |α| radians in the clockwise direction.
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Determine the point (x, y) where r intersects the unit circle. We define

cosα = x

and
sinα = y.

Define also

tanα =
sinα

cosα
.

secα =
1

cosα
,

cscα =
1

sinα
,

cotα =
cosα

sinα
.

Problem 6.3.1 Use the definitions for the sine, cosine, and tangent functions to evaluate
sinα, cosα and tanα when α equals

1. 0

2. π
2

3. π

4. 3π
2

5. 2π

6. π
3

7. π
4

8. π
6

9. nπ
3

for all possible integer values of n

10. nπ
4

for all possible integer values of n

11. nπ
6

for all possible integer values of n
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Problem 6.3.2 Drawing on the definitions for the sine and cosine functions, sketch the
graphs of the functions f(α) = sinα and f(α) = cosα, and explain how you can deduce
these naturally from the unit circle definition.

Problem 6.3.3 Continuing to think about the unit circle definition, complete the following
formulas and give brief explanations, including a diagram, for each.

1. sin(−α) = − sin(α).

2. cos(−α) =

3. sin(π + α) =

4. cos(π + α) =

5. sin(π − α) =

6. cos(π − α) =

7. sin(π/2 + α) =

8. cos(π/2 + α) =

9. sin(π/2− α) =

10. cos(π/2− α) =

11. sin2(α) + cos2(α) =

Problem 6.3.4 Use GeoGebra to make a sketch of the unit circle to illustrate what you
have learned so far.

Problem 6.3.5 Use the sine and cosine functions to determine the coordinates of the ver-
tices of the following. In each case except the last two, choose one vertex to be the point
(1, 0).

1. A regular triangle with vertices having a distance of 1 from the origin.
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2. A regular square with vertices having a distance of 1 from the origin.

3. A regular pentagon with vertices having a distance of 1 from the origin.

4. A regular hexagon with vertices having a distance of 1 from the origin.

5. A regular heptagon with vertices having a distance of 3 from the origin.

6. A regular n-gon with vertices having a distance of r from the origin.

Problem 6.3.6 Confirm the above calculations by entering the coordinates of the above
points into GeoGebra.

Problem 6.3.7 Here is perhaps a more familiar way to define sine and cosine for an acute
angle α: Take any right triangle for which one of the angles measures α. Then sinα is the
ratio of the lengths of the opposite side and the hypotenuse, and cosα is the ratio of the
lengths of the adjacent side and the hypotenuse. Explain why this definition gives the same
result as the unit circle.

Problem 6.3.8 Describe a procedure to determine the rectangular coordinates (x, y) of a
point from its polar coordinates (r, θ) and justify why it works.

Problem 6.3.9 Look up the definitions of cylindrical and spherical coordinates.

1. Justify the following conversion from cylindrical coordinates (r, θ, z) to rectangular
coordinates (x, y, z).

x = r cos θ
y = r sin θ
z = z

2. Justify the following conversion from spherical coordinates (r, θ, φ) to rectangular co-
ordinates (x, y, z).

x = r cos θ sinφ
y = r sin θ sinφ
z = r cosφ
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6.4 Trigonometric Identities

Problem 6.4.1 In this problem we will use the triangle pictured below. In this triangle all
angles have measure less than 90◦; however, the results hold true for general triangles.

The lengths of BC, AC and AB are a, b and c, respectively. Segment AD has length c′ and
DB length c′′. Segment CD is the altitude of the triangle from C, and has length h.

The usual formula for the area of a triangle is 1
2
(base)(height), as you probably already know.

1. Prove that area (4ABC) = 1
2
bc sinA.

2. What is a formula for area (4ABC) using sinB? Using sinC? (Note: you will have
to use the altitude from A or B).

3. What is the relationship of these formulas to the SAS triangle congruence criterion?

Problem 6.4.2 Using the same triangle, the Law of Sines is:
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sinA

a
=

sinB

b
=

sinC

c
.

1. We showed that the area of this triangle was given by three different formulas. What
are they?

2. From these three formulas, prove the Law of Sines.

Problem 6.4.3 The Law of Cosines is:

a2 = b2 + c2 − 2bc cosA.

Using the above triangle:

1. Show that c′ = b cosA.

2. Observe the obvious fact that c′′ = c− c′.

3. Verify that h2 = b2 − (c′)2.

4. Apply the Pythagorean Theorem to triangle 4CDB, then use the facts above to make
the appropriate substitutions to prove the Law of Cosines.

5. What happens when you apply the Law of Cosines in the case that 6 A is a right angle?

Problem 6.4.4 Suppose for a triangle you are given the lengths of the three sides. How
can you determine the measures of the three angles?
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Problem 6.4.5 Suppose for a triangle you are given the lengths of two sides and the measure
of the included angle. How can you determine the length of the other side, and the measures
of the other two angles?

Problem 6.4.6 Suppose for a triangle you are given the measures of two angles and the
length of the included side. How can you determine the measure of the other angle, and the
lengths of the other two sides?

Problem 6.4.7 Assume that you have triangle 4ABC such that the coordinates of the
three (distinct) points A, B, and C are (0, 0), (x1, y1), and (x2, y2), respectively. Use the
Law of Cosines and the distance formula to prove that

cosA =
x1x2 + y1y2√

x21 + y21

√
x22 + y22

.

Problem 6.4.8 Assume that A and B are two points on the unit circle centered at the
origin, with respective coordinates (x1, y1) and (x2, y2). Draw the line segments OA and
OB. Let α be the angle that OA makes with the positive x-axis, and β be the angle that
OB makes with the positive x-axis.
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1. From Problem 6.4.7 we know that

cos( 6 AOB) =
x1x2 + y1y2√

x21 + y21

√
x22 + y22

From this, prove that

cos(β − α) = cosα cos β + sinα sin β.
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2. Replace α with −α in the previous equation to prove

cos(β + α) = cos β cosα− sin β sinα.

3. Replace β with π/2− γ and α with −δ in the previous equation to prove

sin(γ + δ) = sin γ cos δ + cos γ sin δ.

4. Replace δ with −δ in the previous equation to prove

sin(γ − δ) = sin γ cos δ − cos γ sin δ.

The above four formulas are the trigonometric angle sum and angle difference formulas.

Problem 6.4.9 Prove the double angle formulas:

sin(2α) = 2 sinα cosα.

cos(2α) = cos2 α− sin2 α = 2 cos2 α− 1 = 1− 2 sin2 α.
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Problem 6.4.10 Prove the half angle formulas for angle 0 ≤ β ≤ π
2
.

sin(β/2) =

√
1− cos β

2
.

cos(β/2) =

√
1 + cos β

2
.
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6.5 Rotations

Problem 6.5.1 Now assume that we have a circle of radius r, that point A has coordinates
(x1, y1) = (r cos θ, r sin θ), and that we wish to rotate it by φ about the origin, obtaining the
point B = (x2, y2) = (r cos(θ + φ), r sin(θ + φ)).

1. Prove that
(x2, y2) = (x1 cosφ− y1 sinφ, x1 sinφ+ y1 cosφ).

2. Conclude that:

The matrix for the rotation centered at the origin by the angle φ is[
c −s
s c

]

where c = cosφ and s = sinφ.
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That is to say, prove that [
x2
y2

]
=

[
c −s
s c

] [
x1
y1

]
.

Problem 6.5.2 Find the matrices for the rotations about the origin by each angle φ, 0 ≤
φ < 360◦, that is a multiple of 90 degrees.

Problem 6.5.3 Find the matrices for the rotations about the origin by each angle φ, 0 ≤
φ < 360◦, that is a multiple of 45 degrees.

Problem 6.5.4 Find the matrices for the rotations about the origin by each angle φ, 0 ≤
φ < 360◦, that is a multiple of 30 degrees.
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6.6 Complex Numbers

Any complex number z = a+ bi can be represented by a point (a, b) in the Cartesian plane.
The real number a is called the real part of z, and the real number (not including the i)
is called the imaginary part of z. But you can set r =

√
a2 + b2 and find θ such that

cos θ = a/r and sin θ = b/r. That is, (r, θ) are polar coordinates for the point (a, b). Then
z = r(cos θ + i sin θ). The angle θ is called the argument of z, denoted arg z, and the length
r is called the modulus of z, denoted |z|. Note: Sometimes r(cos θ+ i sin θ) is written rcis θ.

Problem 6.6.1 Suppose z1 = a1 + ib1 and z2 = a2 + ib2, corresponding to the points
P1 = (a1, b1) and P2 = (a2, b2), respectively, in the Cartesian plane. Explain how to find
z = z1 + z2 geometrically. Explain how to find z = z1 − z2 geometrically.

Problem 6.6.2 Suppose z1 = r1cis θ1 and z2 = r2cis θ2, corresponding to the points P1, P2

in the Cartesian plane with polar coordinates (r1, θ1), (r2, θ2), respectively. Explain how to
find z = z1z2 geometrically. Explain how to find z = z1/z2 geometrically.

Problem 6.6.3 Prove the following:

Let w = r(cosφ + i sinφ). Then the function f(z) = wz rotates the complex plane
counterclockwise by the angle φ and then scales it by a factor of r.

Problem 6.6.4 From what you learned in the previous exercise,

1. Explain geometrically what multiplying by i does.

2. Show geometrically that i2 = −1.

3. Find three complex numbers such that z3 = 1.

4. Find three complex numbers such that z3 = 27.

5. Find four complex numbers such that z4 = 1.
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6. Find four complex numbers such that z4 = 1
16

.

7. Find six complex numbers such that z6 = 1.

8. Find two complex numbers such that z2 = i.

9. Find three complex numbers such that z3 = 8i.

10. Explain how to calculate zn for any particular complex number z, where n is a positive
integer.

11. Explain how to find all solutions to any equation of the form zn = z0 where n is a
positive integer and z0 is a particular complex number.

Problem 6.6.5 Show that if we map or identify the complex number x + iy = rcis θ with
the 2× 2 matrix [

rc −rs
rs rc

]
, equivalently,

[
x −y
y x

]
,

where c = cos θ and s = sin θ, then we can add and multiply complex numbers by simply
adding and multiplying their associated matrices. Thus, this set of matrices is a representa-
tion of, or isomorphic to, the complex numbers.

Note also that the subset of matrices of the form[
x 0
0 x

]

is isomorphic to the set of real numbers.

We have seen that radians are a natural unit for getting a nice formula for the length of a
circular arc: ` = rθ if θ is the central angle measured in radians, r is the radius of the circle,
and ` is the length of the arc. Another motivation for expressing angles is radians is the
Taylor series formulas for sine and cosine:
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For angle x measured in radians:

sinx =
x

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · ·

cosx =
1

0!
− x2

2!
+
x4

4!
− x6

6!
+ · · ·

Problem 6.6.6 Derive these Taylor series.

Problem 6.6.7 Sum the squares of the above series to verify that sin2 x+ cos2 x = 1.

This might remind you of the Taylor series for ex:

ex =
1

0!
+
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+
x7

7!
+ · · ·

Problem 6.6.8 Derive this Taylor series.

Problem 6.6.9 Use the above series to show that eaeb = ea+b.

From substitution (and some observations about convergence), one gets the beautiful formula
for all complex numbers x:

eix = cosx+ i sinx
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In particular, setting x = π yields an expression containing the perhaps five most important
constants in mathematics:

eiπ + 1 = 0

These formulas provide a connection between two representations for complex numbers on
the one hand, and Cartesian and polar coordinates on the other. Any complex number rcisθ
can now also be written reiθ. Because r1e

iθ1r2e
iθ2 = r1r2e

i(θ1+θ2) we have another way to
see that to multiply two complex numbers we add the angles (arguments) and multiply the
lengths (moduli).

Problem 6.6.10 Suppose z = z1z2 where z1 = eiθ1 and z2 = eiθ2 . Use Problem 6.6.9 to
prove the angle sum formulas for sine and cosine.
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7 Transformations, Congruence and Similarity

7.1 Congruence

Let’s begin with some exercises to clarify the notion of congruence.

Problem 7.1.1 Are the following two figures congruent? Why or why not?

Problem 7.1.2 Are the following two figures congruent? Why or why not?
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Problem 7.1.3 Are the following two figures congruent? Why or why not?

Problem 7.1.4 Are the following two figures congruent? Why or why not?

Problem 7.1.5 Are the following two figures congruent? Why or why not?
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Problem 7.1.6 Are the following two figures congruent? Why or why not?

Problem 7.1.7 Are the following two figures congruent? (These are supposed to be rays.)
Why or why not?
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Problem 7.1.8 Are the following two figures congruent? Why or why not?

Problem 7.1.9 Let f be a function mapping the plane to itself. We call f a bijection if it
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is one-to-one (i.e., an injection), and onto (i.e., a surjection). Suppose S1 and S2 are two
subsets of the plane. Use the notion of bijections to define the notion of congruence between
S1 and S2.

Problem 7.1.10 An isometry is a distance-preserving bijection f of the plane to itself. To
say that f is distance-preserving means that the distance f(P )f(Q) between the points f(P )
and f(Q) equals the distance PQ between the points P and Q for all points P , Q in the
plane. Let us define two subsets S1, S2 of the plane to be congruent if and only if there is
an isometry f such that f(S1) = S2. Prove that if f is an isometry and A, B, C are any
three points in the plane, then m6 f(A)f(B)f(C) = m 6 ABC.

Problem 7.1.11 If two triangles are congruent under this new definition, explain why they
are congruent under the “traditional” definition, of having congruent corresponding sides
and congruent corresponding angles.

Problem 7.1.12 Explain why the new definition of congruence can be applied to answer
all of the Exercises 7.1.1–7.1.8.
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7.2 Isometries

Recall the definition of isometry given in Problem 7.1.10. Four types of isometries are:

1. Translation by specified direction and amount. We can indicate the translation by
drawing a vector.

Note that the identity isometry is a special case of a translation in which the translation
amount is zero.

2. Rotation by a specified angle about a specified point. We can indicate the rotation by
drawing an angle at the center of rotation.
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Note that the identity isometry is a special case of a rotation in which the rotation
angle is zero.

3. Reflection across a specified line. We can indicate the reflection by drawing the line of
reflection.
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4. Glide reflection—reflection across a specified line followed by a translation parallel to
that line by a specified amount. We can indicate the glide reflection by drawing the
line and drawing a parallel vector. Remember that a reflection is a special case of a
glide reflection in which the translation amount is zero.

Problem 7.2.1 In each case below, apply the indicated isometry to the figure. You may
need a protractor, compass, and straightedge. Note: You may also continue this exercise
with a partner, with one person placing the figure and specifying the isometry, and the other
applying the isometry to the figure.
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2.
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3.
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4.
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Problem 7.2.2 Open each of the following GeoGebra files. In each case, drag the red figure
around, observing the effect on the two figures. Determine what isometry maps the figure
containing A to the second figure.

1. Isometry 1

2. Isometry 2

3. Isometry 3

4. Isometry 4

Problem 7.2.3 Open each of the following GeoGebra files. In each case, drag point A
around, observing the effect on point A′. Determine what isometry maps point A to point
A′.

1. Isometry 5

2. Isometry 6

3. Isometry 7

4. Isometry 8
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Problem 7.2.4 Mimic the above exercise by making “human isometries”. Use the class-
room floor as the plane, and specify an isometry f by drawing a translation vector, selecting
a center and angle of rotation, choosing a reflection line, or choosing a reflection line and a
parallel translation amount. Select two people, A and B, to play the role of the two points in
the previous exercise. Person A moves around; person B must move to the correct position
as specified by the isometry.

Problem 7.2.5 Learn how to use GeoGebra to apply isometries to various figures.

Problem 7.2.6 Go to the website for the National Library of Virtual Manipulatives, http:
//nlvm.usu.edu, and learn how to use “Transformations - Reflection”, “Transformations -
Rotation”, and “Transformations - Translation”. Write an explanation for the other members
of your class.

123

http://nlvm.usu.edu
http://nlvm.usu.edu


Problem 7.2.7 In each of the following cases determine what isometry was applied to move
the figure containing the point A to the figure containing the point B. If it is a translation,
draw a vector of translation. If it is a rotation, mark the center of rotation and draw an angle
of rotation. If it is a reflection, draw the line of reflection. If it is a glide reflection, draw the
line of reflection and draw a vector of translation. Note: You may also extend this exercise
with a partner, with one person placing the figures, either on paper or with Wingeom, and
the other determining the isometry.
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2.

126



3.
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4.

Problem 7.2.8 Refer to Exercise 7.2.7. Describe general procedures to identify the isometry
and its elements from such figures and justify your answers.
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Problem 7.2.9 Cut out a pair of congruent scalene triangles. Place them on a piece of
paper in any two locations. Convince yourself that in each case, one is related to the other
by a translation, rotation, reflection, or glide reflection.

Problem 7.2.10 Given two different points A and B.

1. Describe all translations that map A to B.

2. Describe all rotations that map A to B.

3. Describe all reflections that map A to B.

4. Describe all glide reflections that map A to B.

Problem 7.2.11 Given three different points A,B,C such that AB = AC.

1. Describe all translations that map A to A and B to C.

2. Describe all rotations that map A to A and B to C.

3. Describe all reflections that map A to A and B to C.

4. Describe all glide reflections that map A to A and B to C.

Problem 7.2.12 Let f be an isometry of the plane (not necessarily one of the four specific
types we have been discussing). Let A,B,C be three noncollinear points. Show that if you
know f(A), f(B), and f(C), then you can determine f(P ) for any point P . That is to say,
f is uniquely determined by its action on any three particular noncollinear points.

Problem 7.2.13 Let f be an isometry of the plane (not necessarily one of the four specific
types we have been discussing). Show that f can be expressed as a sequence (composition)
of at most three reflections.

Problem 7.2.14 Show that any composition of at most three reflections is a translation,
rotation, reflection, or glide reflection.
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Problem 7.2.15 Here we examine the net result of performing two isometries in a row.
Experiment on paper and with GeoGebra, and then justify your answers. What is the net
result of:

1. A translation by (p1, q1) followed by a translation by (p2, q2)?

2. A reflection across a line `1 followed by a reflection across a parallel line `2?

3. A reflection across a line `1 followed by a reflection across a nonparallel line `2?

4. A rotation by α1 about a point (p1, q1), followed by a rotation by α2 about the same
point?

5. A rotation by α1 about a point (p1, q1), followed by a rotation by α2 about a different
point (p2, q2)?

Problem 7.2.16 Consider the following eight transformations:

• I, the identity transformation.

• R90, rotation by 90 degrees counterclockwise about the origin.

• R180, rotation by 180 degrees counterclockwise about the origin.

• R270, rotation by 270 degrees counterclockwise about the origin.

• F0, reflection (“flip”) about the x-axis.

• F45, reflection about the line y = x.

• F90, reflection about the y-axis.

• F135, reflection about the line y = −x.

Fill in this multiplication table. The entry in row i, column j should be the net result of
FIRST performing the transformation associated with COLUMN j, and THEN performing
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the transformation associated with ROW i.

◦ I R90 R180 R270 F0 F45 F90 F135

I
R90

R180

R270

F0

F45

F90

F135
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7.3 Formulas for Isometries

Let’s derive formulas for functions that transform a shape in certain ways.

Problem 7.3.1 Choose a partner. Construct two “L’s” composed of four squares as indi-
cated below in two different colors, say, green and red. One partner will place the two L’s
on grid paper in various ways, with vertices placed on grid points (they can even overlap!).
The other will find a formula for a function, in the above form, that describes an isometry
that will map the green L to the red L. Repeat this process several times, with partners
changing roles.

Problem 7.3.2 Let’s express the functions found in Exercise 7.3.1 in the form

x2 = a1x1 + b1y1 + c1
y2 = a2x1 + b2y1 + c2
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by listing the coefficients in a matrix like this: a1 b1 c1
a2 b2 c2
0 0 1



This is handy because applying f to (x, y) corresponds to multiplying the matrix for f by
the column vector  x

y
1

 .

What common characteristics do you observe in the functions that you found?

Problem 7.3.3 Suppose f1 and f2 are two functions with corresponding matrices M1 and
M2, respectively. Prove that the matrix for the composition function f2 ◦f1 (first performing
f1, then performing f2) is the product of the matrices M2M1.

Problem 7.3.4 Determine the matrices for the following isometries:

1. Translation by the amount (p, q).

2. The identity isometry, f(x, y) = (x, y), which may be regarded as a translation by the
amount (0, 0).

3. Rotation by 90 degrees about the point (p, q). Suggestion: First solve the case when
(p, q) = (0, 0). Then think of a rotation about an arbitrary point (p, q) as a composition
of (1) a translation moving (p, q) to the origin, (2) a rotation about the origin, and (3)
a translation that moves the origin back to the point (p, q).

4. Rotation by 180 degrees about the point (p, q).

5. Rotation by 270 degrees about the point (p, q).

6. Reflection across the horizontal line y = p.

7. Reflection across the vertical line x = p.
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8. Reflection across the line y = x+ p.

9. Reflection across the line y = −x+ p.

10. Reflection across the horizontal line y = p followed by a horizontal translation by q
units.

11. Reflection across the vertical line x = p followed by a vertical translation by q units.

12. Reflection across the line y = x+ p followed by a translation by (q, q) (parallel to the
line). (A glide reflection.)

13. Reflection across the line y = −x + p followed by a translation by (q,−q) (parallel to
the line). (A glide reflection.)

Problem 7.3.5 Choose a partner. One partner will write down the formula for a function
that fits one of the above types, choosing specific numbers. The other partner will identify
the type of isometry represented by the formula, describing the amount of translation, the
center and amount of rotation, or the reflection line and the amount of translation parallel
to that line. Repeat this procedure several times, with partners changing roles.

Problem 7.3.6 Take some of the formulas found in Exercise 7.3.1 and identify the isometry
as in the previous exercise.

Problem 7.3.7 Recall the matrix for a rotation about the origin from Section 6.5. Now
express it in the form of a 3× 3 matrix. Find the matrices for the rotations about the origin
by each angle that is a multiple of 30 degrees.

Problem 7.3.8 Find the matrices for the rotations about the origin by each angle that is
a multiple of 45 degrees.

Problem 7.3.9 Find the matrix for the isometry that rotates by δ about the point (p, q).
Suggestion: First apply a translation that moves the point (p, q) to the origin. Then rotate
by δ about the origin. Finally apply a translation that moves the origin back to (p, q).

134



Problem 7.3.10 Confirm that the above matrix works for the rotation examples you con-
sidered in Exercise 7.3.4.

Problem 7.3.11 In this exercise we will derive the matrix for the reflection across the line
with equation px+ qy+ r = 0. Since this is the equation of a line, it cannot be the case that
both p and q are zero. Divide the equation of the line through by

√
p2 + q2 so that we may

assume from now on that p2 + q2 = 1.

To reflect the point P = (x1, y1) across the line, we must move in a direction perpendicular
to the line until we intersect the line at the point Q. Then we must move the same distance
to the other side of the line, reaching the point R. The direction (p, q) is perpendicular to
the line, so the coordinates of Q are (x1, y1) + t(p, q) = (x1 + tp, y1 + tq) for some number t.

1. Substitute the point Q into the equation of the line and solve for t. Remember that
we are assuming that p2 + q2 = 1.

2. Find the coordinates of R, (x2, y2) = (x1, y1) + 2t(p, q) = (x1 + 2tp, y1 + 2tq).

3. Derive the matrix for this reflectional isometry.
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4. Verify that the matrix is of the form c s u
s −c v
0 0 1


where c2 + s2 = 1. In what way is this different from the general rotation matrix?

Problem 7.3.12 Confirm that the above matrix works for the reflection examples you con-
sidered in Exercise 7.3.4.

Problem 7.3.13 Find the matrix for the isometry resulting from first reflecting across the
line px + qy + r = 0 and then translating by (tq,−tp) (which is a direction parallel to the
line). This will be the matrix for the general glide reflection.

Problem 7.3.14 Confirm that the above matrix works for the glide reflection examples you
considered in Exercise 7.3.4.

Problem 7.3.15 Prove that any matrix of the form c −s u
s c v
0 0 1


in which c2 + s2 = 1 is either a translation matrix or else corresponds to a rotation about
some point. Suggestion: If the matrix is not a translation matrix, look at the results of
Exercise 7.3.9 and prove that it is possible to solve for the angle of rotation, and for p and q.

Problem 7.3.16 Prove that any matrix of the form c s u
s −c v
0 0 1


in which c2 + s2 = 1, is either a reflection or a glide reflection matrix. Suggestion: Look at
the results of Exercise 7.3.13 and prove that it is possible to solve for for p, q, r and t.
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Problem 7.3.17 Find a partner. Take turns doing the following: One person chooses a
particular isometry and derives the associated matrix. The other person reconstructs the
isometry from the matrix.

Problem 7.3.18 Are there isometries of the form a1 b1 c1
a2 b2 c2
0 0 1


other than the ones we have found? Prove that if the above matrix corresponds to an
isometry, then it must be of the form of a translation matrix, a rotation matrix, or a glide
reflection matrix. Suggestion: Apply the isometry to the three points A = (0, 0), B = (1, 0),
and C = (0, 1), remembering that an isometry must be distance-preserving.

Problem 7.3.19 Prove directly by algebra that each of the functions described by the
matrices below are distance-preserving, assuming c2 + s2 = 1: c −s u

s c v
0 0 1

 ,
 c s u
s −c v
0 0 1
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7.4 Transforming Functions

Refer to the sections “Transforming” and “Modeling” in the presentation here:

http://www.ms.uky.edu/~lee/arkansas2011/Functions.pdf
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7.5 Basic Properties

Let’s consider a set of properties of isometries and similarity transformations to be given,
and see what we can prove from them. Some of these properties are strong assumptions.

Note 7.5.1 Some properties of isometries:

1. An isometry maps points to points and lines to lines.

2. An isometry f preserves distance: If f maps A to A′ and B to B′, then AB = A′B′.

3. An isometry f preserves angle measure: If f maps A,B,C to A′, B′, C ′, respectively,
then m 6 ABC = m6 A′B′C ′.

Note 7.5.2 Some properties of translations:

1. Every translation is an isometry.

2. Given any two different points A,B there is a (unique) translation that maps A to B.

3. If a translation maps a line ` to a line m, then either ` = m or ` is parallel to m.

Note 7.5.3 Some properties of reflections:

1. Every reflection is an isometry.

2. Every line is the axis of a (unique) reflection.

3. A point is fixed by a reflection if and only if it lies on the axis of that reflection.

4. Given any two different points A,B there is a (unique) reflection that maps A to B.

Note 7.5.4 Some properties of rotations:
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1. Every rotation is an isometry.

2. Every point and angle measure determines a unique rotation about that point by that
angle measure.

3. A point is fixed by a nonzero rotation if and only if it is the center of that rotation.

4. Given any three distinct points A,B,C such that AC = BC, there is a unique rotation
about C that maps A to B.

Note 7.5.5 Some properties of similarity transformations:

1. A similarity transformation with scaling factor s > 0 is a bijection of the plane onto
itself with the property that if A,B are mapped to A′, B′, respectively, then A′B′ =
sAB. That is to say, all distances are scaled by the same constant s.

2. A similarity transformation maps points to points and lines to lines.

3. An similarity transformation f preserves angle measure. If f maps A,B,C to A′, B′, C ′,
respectively, then m6 ABC = m6 A′B′C ′.

Note 7.5.6 Some properties of dilations:

1. Let P be a point and r be a nonzero real number. A dilation f centered at P with
dilation factor r is described as follows: To find the image of a point A, if r > 0 choose

point B = f(A) on ray
−→
PA such that PB = rPA, and if r < 0 choose point B = f(A)

on the ray opposite ray
−→
PA such that PB = |r|PA.

2. Every dilation is a similarity transformation.

3. Every point P and nonzero real number r determines a unique dilation centered at
that point.

4. If a dilation maps a line ` to a line m, then either ` = m or ` is parallel to m.

Theorem 7.5.7 1. The composition of any two isometries is an isometry.
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2. Every isometry is a composition of translations, reflections, and rotations.

3. Every isometry is a translation, reflection, rotation, or glide reflection.

4. Every translation is a composition of two reflections.

5. Every rotation is a composition of two reflections.

6. Every isometry is a composition of at most three reflections.

Theorem 7.5.8 1. The composition of any two similarity transformations is a similarity
transformation.

2. Every similarity transformation is a composition of a dilation and an isometry.

7.6 Some Consequences

Definition 7.6.1 Two figures are congruent if one is the image of the other under the action
of an isometry. Two figures are similar if one is the image of the other under the action of
a similarity transformation.

Problem 7.6.2 Two line segments are congruent if and only if they have the same measure.
Two angles (each formed by two rays) are congruent if and only if they have the same
measure.

Problem 7.6.3 Two triangles ∆ABC and ∆DEF are congruent if and only if there is a
one-to-one correspondence between the sets vertices, say, A ↔ D, B ↔ E, C ↔ F , such
that corresponding sides have equal length and corresponding angles have equal measure.

Problem 7.6.4 Prove the SAS congruence criterion.

Problem 7.6.5 Prove the ASA congruence criterion.
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Problem 7.6.6 Prove the SSS congruence criterion.

Problem 7.6.7 Prove that if AB = AC in ∆ABC, then m6 B = m6 C.

Problem 7.6.8 Prove that equilateral triangles are equiangular.

Problem 7.6.9 Prove that if m6 B = m6 C in ∆ABC, then AB = AC.

Problem 7.6.10 Prove that equiangular triangles are equilateral.
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7.7 Symmetries of Frieze Patterns

Consider the set S = {(x, y) ∈ R2 : −1 ≤ y ≤ 1}. We will call this a strip. What are the
possible symmetries of the strip?

1. The identity symmetry, which we will denote I.

2. Translations by any amount parallel to the x-axis. If we translate by an amount a
(which may be positive, negative, or zero), we will denote this symmetry by Ta.

3. Rotations by 180◦ about a point on the x-axis. If we rotate about the point (b, 0) we
will denote this symmetry by Rb.

4. Vertical reflection across any line perpendicular to the x-axis. If we reflect across the
line x = c, we will denote this symmetry by Vc.

5. Horizontal reflection across the x-axis, which we will denote H.

6. Glide reflection across the x-axis. If we reflect across the x-axis and then translate by
an amount d (which may be positive, negative, or zero), we will denote this symmetry
by Gd.

A repeating strip pattern or frieze pattern is a subset of the above strip that possesses one
particular translational symmetry such that each of its translational symmetries is an integer
repetition (positive, negative, or zero) of this particular one.

You can make some simple (boring) frieze patterns such as:

1. · · · A A A A A · · ·

2. · · · O O O O O · · ·

3. · · · Z Z Z Z Z · · ·

You can also find many examples on the web; e.g., search for “frieze pattern”.
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Problem 7.7.1 For each of the strip symmetries below, write a formula for the function.
The first two are done for you.

1. I(x, y) = (x, y).

2. Ta(x, y) = (x+ a, y).

3. Rb(x, y) =

4. Vc(x, y) =

5. H(x, y) =

6. Gd(x, y) =

Problem 7.7.2 For each of the following strip symmetries, write the formula. The first one
is done for you.

1. A translation to the right by 2 units. T2(x, y) = (x+ 2, y).

2. A translation to the left by 3 units.

3. A rotation by 180◦ about the point (−5, 0).

4. A rotation by 180◦ about the point (4, 0).

5. A reflection across the line x = 10.

6. A reflection across the line x = −7.

7. A glide reflection involving a translation to the right by 6 units.

8. A glide reflection involving a translation to the left by 8 units.

Problem 7.7.3 Identify the following strip symmetries. The first two are done for you.

1. f(x, y) = (x, y). The identity: I.
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2. f(x, y) = (−x, y). Reflection about the vertical line x = 0: V0.

3. f(x, y) = (x,−y).

4. f(x, y) = (−x,−y).

5. f(x, y) = (x+ 1, y).

6. f(x, y) = (x− 2, y).

7. f(x, y) = (−x+ 1, y).

8. f(x, y) = (−x− 2, y).

9. f(x, y) = (x+ 1,−y).

10. f(x, y) = (x− 2,−y).

11. f(x, y) = (−x+ 1,−y).

12. f(x, y) = (−x− 2,−y).

Problem 7.7.4 In the next set of problems, f ◦ g means FIRST perform g, THEN perform
f . For the following, determine the formula, and then identify the symmetry:

1. V3 ◦H.

2. G−1 ◦ V2.

3. R2 ◦G1.

4. G1 ◦R2.

5. R1 ◦R3.

6. Rb ◦ Vc.

7. Ta ◦Rb.

8. T−3 ◦R0 ◦ T3. Explain why this makes sense in a sentence or two.

9. T−3 ◦ V0 ◦ T3. Explain why this makes sense in a sentence or two.
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10. Find f such that f ◦ T2 = I.

11. Find f such that f ◦ Ta = I.

12. Find f such that f ◦R3 = I.

13. Find f such that f ◦Rb = I.

14. Find f such that f ◦ V−1 = I.

15. Find f such that f ◦ Vc = I.

16. Find f such that f ◦H = I.

17. Find f such that f ◦G5 = I.

18. Find f such that f ◦Gd = I.

Problem 7.7.5 Fill in the following composition table, filling in each entry with f ◦ g and
identifying what kinds of symmetries can result. (You may have to redraw this chart to

146



make it larger.) REMEMBER: f ◦ g means FIRST do g, and THEN do f .

f

g

f ◦ g I Tb Rb Vb H Gb

I

Ta

G2b−2a
Ra glide refl.

(hor. refl. if a = b)

Va

H

Ga

Problem 7.7.6 We will now try to classify repeating strip patterns by the types of sym-
metries they have. In the following table, R indicates the presence of some 180◦ rotational
symmetry about a point on the x-axis, V indicates the presence of a reflectional symmetry
across some vertical line, H indicates the presence of a reflectional symmetry across the
x-axis, and G indicates the presence of some nontrivial glide reflectional symmetry across
the x-axis (i.e., where the accompanying translation is by a non-zero amount, so it is not
merely a horizontal reflection.) For a given row there are sixteen possible ways to place
either a “Y” (for “Yes”) or leave it blank (for “No”) in each cell of the row (why?). Fill in
the table with the sixteen possibilities. For each possibility, either draw a repeating strip
pattern to the right of the row exhibiting precisely that combination of symmetries, or else
use the results of the previous chart to briefly explain why that particular combination of
symmetries is impossible for any repeating strip pattern. For example, the presence of H
and T (all patterns have T ) forces the presence of G, and the presence of R and V also forces
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the presence of G.

T R V H G
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
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