## MA 341 - Homework \#1

Due Friday, September 5, in class
We saw in class that an equation of a line containing the distinct points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\left(y_{1}-y_{2}\right) x+\left(x_{2}-x_{1}\right) y=x_{2} y_{1}-x_{1} y_{2}
$$

Knowing this, now assume that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are three distinct points and consider the expression

$$
A=x_{1} y_{2}+x_{2} y_{3}+x_{3} y_{1}-x_{1} y_{3}-x_{2} y_{1}-x_{3} y_{2}
$$

1. Prove that if the three points all lie on a common line then $A=0$.
2. Conversely, prove that if $A=0$ then the three points all lie on a common line.
3. Do a lot of experiments with actual points to try to figure out what geometric meaning the quantity $A$ has. That is to say, if you plot the three points, make a good guess backed by your evidence as to what $A$ measuring. It is not necessary (yet) to prove your conjecture.
