MA 341 - Homework \#4

Due Friday, October 3, in class

1. Course Notes 2.10.1.
2. Course Notes 2.10.2.
3. Course Notes 2.10.3.
4. Assume we know that the Pythagorean Theorem holds in \mathbf{E}^{2}. Use this to derive the formula $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ for the distance between the points $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$. Hint: Consider a third point $C=\left(x_{1}, y_{2}\right)$.
5. Assume we know that two lines L_{1} and L_{2} with respective direction vectors (u_{1}, v_{1}) and $\left(u_{2}, v_{2}\right)$ are perpendicular if and only if $\left(u_{2}, v_{2}\right)$ is a nonzero multiple of $\left(v_{1},-u_{1}\right)$. Consider any right triangle $\triangle A B C$ with right angle at A. Then there is a direction vector (u, v) and numbers s and t such that $B=A+s(u, v)$ and $C=A+t(v,-u)$. Use this, together with the distance formula, to prove that the Pythagorean Theorem holds for $\triangle A B C$.
