MA 341 Homework \#8

 Due Monday, November 24, in Class1. Find all complex numbers z such that $z^{3}=-8 i$.
2. Course Notes, Problem 7.2.7. Take pains to make neat, clear diagrams.
3. Prove that ℓ_{1} and ℓ_{2} are parallel lines, then the net effect of first reflecting across ℓ_{1} and then reflecting across ℓ_{2} is a translation in the direction perpendicular to the lines, directed from ℓ_{1} towards ℓ_{2}, by an amount equal to twice the distance between the two lines.
4. (a) Consider the circles C_{1} described by $\left(x-a_{1}\right)^{2}+\left(y-b_{1}\right)^{2}=c_{1}^{2}$ and C_{2} described by $\left(x-a_{2}\right)^{2}+\left(y-b_{2}\right)^{2}=c_{2}^{2}$. Prove algebraically that C_{1} and C_{2} can share at most two points, and further, if they do share two different points P and Q, then the perpendicular bisector of the segment $\overline{P Q}$ is the line through the centers of the circles.
(b) Let f be an isometry of the plane (not necessarily one of the four specific types we have been discussing). Let A, B, C be three noncollinear points. Show that if you know $f(A), f(B)$, and $f(C)$, then you can determine $f(P)$ for any point. That is to say, f is uniquely determined by its action on any three particular noncollinear points.
5. Consider the set of points S in the plane (a "strip") described by $S=\left\{(x, y) \in \mathbf{R}^{2}\right.$: $-1 \leq y \leq 1\}$. Carefully describe the set of all translations, rotations, reflections, and glide reflections that map every point in S back into S.
