MA 341 Homework \#2

Due Wednesday, February 5, in class)

1. Recall: A point in \mathbf{E}^{2} is an ordered pair of real numbers (x, y), and a line in \mathbf{E}^{2} is defined to be the set of points satisfying an equation of the form $a x+b y+c=0$, where a and b are not both zero.

Let $A+\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ be two different points in the plane. Prove (using the above definition of a line):
(a) $x\left(y_{1}-y_{2}\right)+y\left(x_{2}-x_{1}\right)+x_{1} y_{2}-x_{2} y_{1}=0$ is the equation of a line containing both A and B.
(b) If $a x+b y+c=0$, with a and b not both zero, is any linear equation satisfied by both A and B, then it must be a nonzero multiple of the above one.
2. Let S be a sphere in \mathbf{R}^{3} of radius 1 centered at $O=(0,0,0)$. Let P be the plane $\{(x, y, z): z=0\}$. Let $A=(x, y, z)$ be a point on S that is not equal to $N=(0,0,1)$. Let L be the line passing through A and N. Let $B=(u, v, 0)$ be the point at the intersection of L and P.
(a) Derive formulas for u and v in terms of x, y, and z.
(b) Derive formulas for x, y, and z in terms of u and v.

